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Abstract

This thesis studies feature screening and variable selection procedures for ultra-
high dimensional varying coefficient models and partially linear models, and the
extension of the methods to longitudinal data structure.

A new independence screening procedure is proposed for varying coefficient
models based on the conditional correlation between each predictor and the re-
sponse given the depending covariate (CCIS, for short). We establish and prove
the ranking consistency and sure screening property of CCIS, and demonstrate
them empirically through simulations. Furthermore, the iterative screening pro-
cedure (ICCIS) is developed to enhance the finite sample performance. In the
Framingham Heart Study (FHS) example, we derive a new two-stage approach to
select significant Single-nucleotide polymorphism (SNPs) for explaining body mass
index (BMI), and the effect of SNPs may depend on the baseline age of patients.
Firstly CCIS is applied to reduce the ultrahigh dimensionality to the scale under
sample size, and secondly several penalized regression techniques are modified for
varying coefficient models to further select important variables as well as estimate
the coefficient functions.

Moreover, CCIS for varying coefficient models can be extended for the longitu-
dinal data structure. Consider the time-varying coefficient model as an example,
where multiple response values are observed for every subject. We apply CCIS
in the first stage to the pooled sample, in which we treat all the observations as
independent individuals, although those from the same subject are actually corre-
lated. In this case, the within subject correlation is ignored in the screening stage.
However, the simulation studies show that we do not lose ranking consistency and
sure screening property by doing this. In the real data example, we use a modified
two-stage approach to restudy the effect of SNPs on BMI using FHS data. The
dynamic pattern of age instead of baseline age is considered to illustrate the longi-
tudinal structure. If the efficiency of coefficient function estimators are of interest,
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we can add one more step of a weighted least squared method after the variable
selection stage, by incorporating the covariance matrix estimation procedure.

For partially linear models, another independence screening procedure is devel-
oped in this thesis based on the partial residual method (PRSIS, for short). The
partially linear model can be converted to a linear model with transformed response
and predictors, and then the traditional screening methods for linear models can
be applied, such as sure independence screening (SIS, Fan and Lv, 2008). The de-
sired theoretical properties are demonstrated through simulation studies. Soybean
data analysis are provided to illustrate the two-stage approach based on PRSIS,
using which the important markers are selected for explaining the dry biomass of
soybean.
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Chapter 1
Introduction

1.1 A Brief Overview of Variable Selection and

High Dimensional Models

Variable selection is widely used to identify the underlying model structure when

a large number of predictors are introduced at the initial stage of modeling but

only a few of them are truly relevant to the response. Various techniques are well

developed in the literature to select significant variables, including classical variable

selections and penalized least squares methods. For classical variable selections,

many criteria can be used to select the best subset of the full model, e.g. Adjusted

R2, PRESS (Allen, 1974), Mallow’s Cp (Mallows, 1973), AIC (Akaike, 1974),

BIC (Schwarz, 1978), GIC (Nishii, 1984), among others. Although the sampling

properties are well developed and studied in the literature, the classical variable

selection criteria are not widely used in the modern scientific world due to its

computational cost. Instead, the penalized regression methods, by which one can

simultaneously select significant variables and estimate the coefficients, have gained

a lot of popularity. Researchers have proposed a variety of penalty functions, such

as the LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), Adaptive LASSO

(Zou, 2006), MCP (Zhang, 2010), etc. Some of them are shown to possess nice

theoretical properties such as sparsity, continuity, unbiasedness, consistency and

oracle property.

However, the standard variable selection techniques may fail for high or ultra-
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high dimensional data analysis, which tends to be increasingly frequent and im-

portant due to the rapid development of data collecting technique. For instance,

genome-wide association studies (GWAS), which explore the genetic effect on cer-

tain phenotypes, have attracted great attention recently. Hundreds of thousands

of single-nucleotide polymorphisms (SNPs) are genotyped, leading to ultrahigh

dimensional data analysis, although it is often the case that only a small num-

ber of SNPs are truly associated with the phenotype of interest. This motivates

the researchers to develop new statistical methods for ultrahigh dimensional data,

which contain loosely two categories. One category comprises two stages, where

we first reduce ultrahigh dimensionality to moderate dimensionality, and then ap-

ply a regularization method such as the penalized regression. For the first stage,

Fan and Lv (2008) showed that Sure Independence Screening procedure (SIS) pos-

sesses sure screening property for linear models; Wang(2009) proposed the forward

regression in the same model setting; Hall and Miller (2009) extended the lin-

ear model to nonlinear model using generalized empirical correlation learning; Fan

and Song (2010) explored SIS in generalized linear model by ranking the maximum

marginal likelihood or its estimate; Fan, Feng and Song (2011) explored the feature

screening technique for the ultrahigh dimensional additive model, by ranking the

magnitude of spline approximations for nonparametric components; Zhu, Li, Li

and Zhu (2011) proposed a sure independence ranking and screening (SIRS) pro-

cedure to select important predictors in the multi-index model; Li, Zhong and Zhu

(2012) studied a model-free sure independence screening procedure based on the

distance correlation (DC-SIS), which can also be used directly to screen grouped

predictor variables and multivariate response variables, among many other screen-

ing techniques. One issue with the aforementioned model-based screening methods

is that the validity of screening procedures indeed depend on the model form, in

other words, the screening results are no longer reliable if the underlying model

structure is misspecified. The other category aims to simultaneously identify and

estimate the underlying model structure through a single step of regularized re-

gression. The examples are Dantzig Selector (Candes and Tao, 2007) and SCAD

on high dimensions (Kim, Choi, and Oh, 2008).
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1.2 Ultrahigh Dimensional Varying Coefficient

Models and Partially Linear Models

Ultrahigh dimensional varying coefficient models have become great attraction to

researchers as useful extension of linear models. They allow the number of predic-

tors to be much larger than the sample size, and the corresponding regression coef-

ficients to change over different subjects characterized by certain covariate. For ex-

ample, in genetic research, one might be interested in the effect of singlenucleotide

polymorphism (SNP) on body mass index (BMI), and the effect may depend on

age of each individual. In this case, millions of SNPs are considered, leading to

an ultrahigh dimensional problem. To guarantee the changing effect of SNPs, we

need to allow the coefficients of SNPs to vary with age. More specifically, we can

consider the coefficients as functions of age. However, the diverging dimensionality

of the predictors and their changing effect make the ultrahigh dimensional varying

coefficient models challenging to analyze. Therefore, in this paper, we propose a

novel feature screening method specifically for these models to reduce dimension-

ality, and a two-stage approach based on the screening technique is introduced to

select important predictors and depict their effect.

Some variable selection methods have been developed for varying coefficient

models in literature. Li and Liang (2008) used a generalized likelihood ratio test

to select significant nonparametric components based on SCAD penalty (Fan and

Li, 2001); Wang et al. (2008) presented a regularized estimation procedure based

on the basis function approximations and the SCAD penalty, which can simul-

taneously select significant variables and estimate the nonzero smooth coefficient

functions; Wang and Xia (2009) proposed a shrinkage method incorporating local

polynomial smoothing (Fan and Gijbels, 1996) and LASSO penalized regression

(Tibshirani, 1996). Nevertheless, the existing techniques for varying coefficient

models require fixed model dimension, thus they cannot be applied to ultrahigh

dimensional cases.

To deal with ultrahigh dimensionality, as previously discussed, the two-stage

approach with screening procedure largely depends on model specification, thus

the existing methods are not applicable for the varying coefficient model setting.

Therefore, we are motivated to develop a feature screening method specifically for
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ultrahigh dimensional varying coefficient models.

We construct an conditioning-correlation independent screening (CCIS). The

reason is that varying coefficient models are indeed linear models conditioning on

u. More specifically, we rank the importance of predictors using the conditional

correlation estimates between each predictor and the response given u. We de-

fine the conditional correlation parallel to the pearson correlation in the linear

model setting, except that the expectation and variance are now substituted by

the corresponding conditional expectation and conditional variance. Therefore, the

problem of estimating conditional correlation is transformed to estimating several

conditional means by nonparametric smoothing techniques.

Several desirable theoretical properties of CCIS are also systematically stud-

ied. We show that CCIS possesses the ranking consistency property (Zhu, Li, Li,

and Zhu, 2011), which means with probability tending to 1, the important predic-

tors rank before the unimportant ones. In addition, CCIS satisfies sure screening

property (Fan and Lv, 2008) for varying coefficient models under mild technical

conditions, which guarantees the probability that the model chosen by CCIS in-

cludes the true model tends to 1 as the sample size goes to infinity. Monte Carlo

simulation studies are conducted to empirically verify these theoretical advantages,

and the results indicate that CCIS significantly outperforms SIS under the varying

coefficient model setting.

Furthermore, the varying coefficient model with longitudinal data structure is

also studied. If the depending covariate u is a time vector instead of a scaler, a

similar approach with CCIS can be applied by ignoring the within-subject correla-

tion in the screening stage. The simulation results empirically show that by doing

this we do not lose the desirable theoretical properties.

Another useful extension to linear model is called partially linear model, where

the response is assumed to depend on certain variable in a nonparametric form,

aside from the linear dependency of other variables. The estimation procedures

and variable selection techniques have been well studied in literature. See Chen

(1988), Engle et.al (1986), Heckman (1986), Speckman (1988), Robinson (1988),

and Fan and Huang (2005) for details. However, due to the same issue as varying

coefficient models, ultrahigh dimensional partially linear model remains an open

area. We advocate a novel approach, called PRSIS, to reduce the dimensionality
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based on the idea of partial residual method. Both Monte Carlo simulation results

and the real data analysis are demonstrated.

At last, we consider the generalized varying coefficient model in the discus-

sion part, where the response is binary or count instead of continuous data type.

Conditional correlation is now substituted by conditional likelihood as a screening

score. Simulation results illustrate the validity of the methods.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we give a detailed

review of the existing methods in literature about four foregoing topics: the tradi-

tional variable selection criteria, high or ultrahigh dimensional data analysis, the

statistical methods for varying coefficient models, and the estimation methods for

partially linear models. In Chapter 3, we develop the feature screening procedure

CCIS for varying coefficient models, with Monte Carlo simulations to illustrate

the performance of it and Framingham Heart Study data analysis to show its ap-

plication. In addition, we show that the finite sample performance is improved

by adopting iterative feature screening procedure. In Chapter 4, two theoretical

properties, ranking consistency and sure screening property, are proved. The lon-

gitudinal version of ultrahigh dimensional varying coefficient model is studied in

Chapter 5. And PRSIS, the screening method for ultrahigh dimensional partially

linear models are presented in Chapter 6. In Chapter 7, we summarize the research

in this thesis and discuss the possible extension of our methods to generalized vary-

ing coefficient models.
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Chapter 2
Literature Review

As mentioned before, we mainly focus on three topics. Thus we divide the review

of literature into four parts: First we briefly introduce several standard variable

selection methods for linear models, ranging from classical variable selection to

the penalized regression approach; Second, we discuss how to extend the variable

selection technique to the high or ultrahigh dimensions; Third, we study the sta-

tistical methods used in the varying coefficient model analysis; At last, we review

the estimation procedures for partially linear models.

2.1 Variable Selection for Linear Models

Variable selection is a fundamental technique of finding important explanatory fac-

tors for predicting the response. To reduce the model bias, we tend to introduce

large amount of potential predictors at first, most of which, nevertheless, are re-

dundant and cause problems in model interpretation, computation, prediction, etc.

Therefore, how to find a parsimonious model which contains only a few predictors

but still gives a good fit becomes one of the most important tasks in the statistical

field.

In this section, we mainly focus on the variable selection for the linear regression

model. Suppose that (xi, yi), i = 1, . . . , n, is a random sample from the linear

model:

y = xTβ + ε, (2.1)
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where y ∈ R1 is the response, x = (x1, . . . , xd)
T ∈ Rd is the d-dimensional pre-

dictor, β = (β1, . . . , βd)
T ∈ Rd is the d-dimensional coefficient vector, and ε ∈ R1

is the independently and identically distributed (i.i.d.) random noise with mean

zero.

For the matrix form, denote y = (y1, . . . , yn)T, X = (x1, . . . ,xn)T, and ε =

(ε1, . . . , εn)T, then the linear model (2.1) is reexpressed as

y = Xβ + ε. (2.2)

2.1.1 Classical Variable Selection Criteria

The classical variable selection aims to find the best subset of the full model using

some criteria computed from each submodel. There is large amount of literature

on the topic of subset selection. See Miller (2002) for details.

1. Mallows′s Cp and AIC.

The Cp statistic (Mallows, 1973) is defined as

Cp =
RSSp
σ2

− (n− 2p).

When σ2 is unknown, it is replaced by the residual mean squares under the

full model F in practice:

σ̂2 =
RSSF
n− d

, (2.3)

An equivalent criteria with Mallow’s Cp is called An Information Criterion

(AIC, Akaike, 1974), which is developed based on the Kullback-Leibler dis-

tance. For linear regression models with least square estimators, AIC is

defined by

AICp = RSSp + 2pσ2, (2.4)

where σ2 is unbiasly estimated by (2.3). Thus, AICp is equivalent to Mallow’s

Cp in the linear model setting.
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2. BIC.

For linear models, Bayesian Information Criterion (BIC, Schwarz, 1978) is

to minimize

BICp = RSSp + log(n)pσ2.

Compared with AIC in (2.4), BIC assigns more weight to the degree of free-

dom of the submodel as long as log(n) > 2, thus it tends to choose smaller

models than AIC does. And when the sample size goes to infinity, BIC is

able to determine the true model, while AIC often overfits the model.

3. Other variable selection criteria.

There are many other variable selection criteria similar with AIC and BIC,

summarized by the Generalized Information Criterion (GIC, Nishii, 1984)

GICp = RSSp + κnpσ
2.

For example, κn = 2 yields AIC, while κn = log(n) indicates BIC. Hannan

and Quinn (1979) advocated the φ-criterion by taking κn = c log(log(n)),

and the Risk Inflation Criterion (RIC, Foster and George, 1994) requires

κn = 2 log(d).

Based on these criteria, several algorithms for subset selection can be applied to

choose the optimal submodel. The first, called the best subset selection where all

the 2d possible subsets of the full model are considered, is quite computationally

expensive. The second one is the forward regression, where we start from the

intercept-only model and add one variable with the largest F -value at a time, until

none of the variables is significant in terms of F -statistics. Therefore, this method

requires at most d steps. The third one is the backward elimination, where on the

contrary, we start from the full model and delete one variable with the smallest F -

value at a time until all the remaining are significant. For these two methods, once

a variable is added or deleted, it cannot be reconsidered. To address this issue,

the fourth algorithm, called the stepwise regression, is advocated, which requires

iterative realizations of the forward regression and the backward elimination.



www.manaraa.com

9

2.1.2 Variable Selection via Penalized Least Squares

The subset selection procedures based on the classical criteria admit nice sampling

properties (Barron, Birge and Massart, 1999). However, the computation of them

is infeasible when d is large, and they ignore stochastic errors during the selection

process. To solve these problems, penalized regression approaches are proposed,

where the variable selection is accomplished through the coefficient estimation. In

this section, we mainly focus on the penalized least squares problem (PLS), which

coincides with the penalized likelihood in linear model setting.

Consider the penalized least square function

Q(β) =
1

2n
‖y −Xβ‖2 +

d∑
j=1

pλ(|βj|), (2.5)

where pλ(·) is the penalty function and λ ≥ 0 is a tuning parameter controlling the

model complexity. By minimizing (2.5), we can simultaneously select variables and

estimate their associated regression coefficients, i.e. the coefficient of insignificant

variables are automatically estimated to be 0.

2.1.2.1 Penalty Functions

One natural question arises with PLS problem: what kind of penalty functions

we should use? Fan and Li (2001) advocated three desirable properties of a PLS

estimator:

1) Unbiasedness: The estimator is nearly unbiased for the truly large coeffi-

cients, to reduce model bias.

2) Sparsity: The estimator automatically sets small estimated coefficients to

zero, to reduce model complexity.

3) Continuity: The estimator is continuous in the data, in order to guarantee

the model prediction to be stable.

Moreover, Antoniadis and Fan (2001) advocated three conditions to guarantee the

above properties for a penalty function pλ(t):

1) Approximate Unbiasedness if p′λ(t) = 0 for large t;
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2) Sparsity if mint≥0{t+ p′λ(t)} > 0;

3) Continuity if and only if argmint≥0{t+ p′λ(t)} = 0.

Besides, the penalty function pλ(t) is required to be nondecreasing, continuously

differentiable on [0,∞), and singular at the origin (i.e., p′λ(0+) > 0). The function

−t− p′λ(t) is strictly unimodal on (0,∞). Some widely used penalty functions are

listed below:

1. L0 or Entropy penalty:

pλ(|t|) =
λ2

2
I(|t| 6= 0). (2.6)

Since
∑d

j=1 I(|βj| 6= 0) = p in linear model setting, this penalty leads to

the classical variable selection criteria by assigning different values to λ, e.g.,

when λ = σ
√

2/n, (2.6) yields AIC which is equivalent to Mallow’s Cp for

linear regression models; If λ = σ
√

log(n)/n, this penalty gives BIC; RIC

is obtained by taking λ = σ
√

log(d)/n. However, L0 penalty is not even

continuous, thus does not possess the aforementioned properties.

2. Hard thresholding penalty:

pλ(|t|) = λ2 − (λ− |t|)2+, (2.7)

Hard thresholding penalty (Antonialdis, 1996) is smoother than the Entropy

penalty, but results in the same estimates when the design matrix is orthonor-

mal, that is, the best subset selection coincides with the hard thresholding

rule for orthonormal designs, which is illustrated in Figure 2.2.

3. L2 penalty:

pλ(|t|) =
λ

2
|t|2. (2.8)

L2 penalty yields the ridge regression β̂ = (XTX + nλId)
−1XTy (Hoerl and

Kennard, 1970), which can be applied to deal with collinearity in the predic-

tors. The advantage of this estimator lies in its easy implementation and the
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explicit form of its solution. Yet ridge regression does not produce sparse es-

timators, thus it cannot be used for variable selection. Besides, the resulting

estimator β̂ is biased.

4. L1 penalty:

pλ(|t|) = λ|t|. (2.9)

The L1 penalty yields the Leat Absolute Shrinkage and Selection Operator

(LASSO, Tibshirani, 1996). With this penalty, the penalized least square

function Q(β) in (2.5) becomes

Q(β) =
1

n
‖y −Xβ‖2 + λ

d∑
j=1

|βj|. (2.10)

Minimizing Q(β) above is equivalent to minimizing the RSS subject to the

constraint
∑d

j=1 |βj| < s, by which the model size is controlled and the

sparsity is guaranteed. When the design matrix is orthonormal, the solu-

tion coincides with the soft thresholding rule (Donoho and Johnstone, 1994;

Donoho, Jognstone, Kerkyacharian and Picard, 1995). Yet the drawback of

LASSO estimator is that it equally penalizes all the coefficients, resulting in

the biasness of large coefficients.

5. Lq penalty:

pλ(|t|) =
λ

q
|t|q. (2.11)

The Lq penalty, 0 ≤ q ≤ 2 contains the L2, L1 and L0 penalties as special

cases, and produces bridge regression estimates (Frank and Friedman, 1993).

If q < 1, the solution is sparse but not continuous, while the opposite occurs

for q > 1. When q = 1 which results in LASSO estimates, sparsity and

continuity can be simultaneously satisfied, yet not the unbiasness.

6. SCAD penalty:
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The SCAD penalty is proposed by Fan and Li (2001) with the form

pλ(|t|) = λ|t|I(|t| < λ) +
aλ|t| − (|t|2 + λ2)/2

a− 1
I(λ ≤ |t| < aλ)

+
(a+ 1)λ2

2
I(|t| > aλ) (2.12)

or

p′λ(|t|) = λI(|t| ≤ λ) +
(aλ− |t|)+I(|t| > λ)

a− 1
, (2.13)

where a > 2, and often, a = 3.7 based on a Baysian argument. The SCAD

penalty possesses all the three properties, i.e. unbiasedness, sparsity and

continuity. Furthermore, Fan and Li (2001) proved the SCAD penalized

estimator satisfies the oracle property. That is, the procedure works as well

as if the true model is known in asymptotic sense.

7. Adaptive LASSO penalty:

The form of Adaptive LASSO penalty (Zou, 2006) is the same as L1 penalty,

but it adopts different tuning parameters for different βj’s. More explicitly,

the penalized loss function in (2.5) becomes

Q(β) =
1

n
‖y −Xβ‖2 + λ

d∑
j=1

ωj|βj|, (2.14)

where ωj is used to assign different weights for the coefficients, aiming to

penalize small coefficients more than large coefficients. Specifically, Adaptive

LASSO chooses ωj = 1/|β̂0
j |γ, where γ > 0 and β̂0

j is a
√
n-consistent estimate

of βj such as the least square estimate. The adaptive LASSO is a favorable

alternative for LASSO since it is shown to possess the oracle property.

8. Group LASSO penalty:

Group LASSO (Yuan and Lin, 2006) is a useful extension to LASSO when

the potential predictors are grouped in advance, such as the dummy variables

in analysis-of-variance (ANOVA) problems, and basis functions of nonpara-

metric models, among others. The penalty possesses the same form with
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LASSO, with |βj| replaced by the Euclidean norm ‖βj‖, where βj is the jth

group of predictors. That is, the penalized loss function (2.5) is modified as

Q(β) =
1

n
‖y −Xβ‖2 + λ

d∑
j=1

‖βj‖, (2.15)

where β = (β1, . . . ,βd)
T. Therefore, based on this penalty, we select groups

of variables instead of single variables.

9. MCP:

The minimax concave penalty (MCP) is advocated by Zhang (2010) and

defined by

pλ(|t|) = λ(|t| − |t|2/2aλ)I(|t| < aλ) +
aλ2

2
I(|t| ≥ aλ) (2.16)

where a > 0. The MCP shares similar spirit with the SCAD penalty, includ-

ing the aforementioned three properties and the oracle property.

There are many other penalized regression techniques in literature, e.g., the

Elastic Net (Zou and Hastie, 2005) which linearly combines L1 and L2 penalties

to reduce bias while keep sparsity, and the Nonnegative Garotte (Breiman, 1995)

which is closely related to adaptive LASSO, etc. Some penalties with their first

order derivatives are depicted in Figure 2.1.

Figure 2.2 illustrates the relationship between the penalized least square esti-

mates (PLSE) and the ordinary least square estimates (OLSE) for some commonly

used penalties when the design matrix X is orthonormal. Since the OLSE is unbi-

ased, we expect the large coefficient estimates by PLS equal or close to OLSE to

achieve unbiasness; The sparsity requires small PLSE to be estimated as 0; And

we also want the PLSE to be continuous for the sake of stability. From the plot,

only SCAD penalty guarantees these three properties simultaneously. Generally,

among all the penalties, nonconvex penalties are often more favorable since they

are more likely to satisfy such properties.
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Figure 2.1. The left panel consists of the penalty functions of hard thresholding penalty, L1

penalty, SCAD penalty and MCP, and the right panel includes their derivatives. (Fan and Lv,

2009)

Figure 2.2. The relationship between PLSE and OLSE when the design matrix is orthonormal,

where the x-axis is OLSE, and the y-axis is PLSE.

2.1.2.2 Computation and Implementation of PLS

Most PLS problems with penalties satisfying the aforementioned three properties

are nonconvex and difficult to optimize directly. Nevertheless, we show in this sec-

tion that they can be approximated by some convex functions, thus the nonconvex

problem can be solved via convex optimization algorithms.

1. Local Quadratic Approximation (LQA):
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Fan and Li (2001) proposed a unified local quadratic approximation (LQA)

algorithm for optimizing nonconvex penalized least squares, the idea of which

is to locally and iteratively approximate Q(β) in (2.5) by a quadratic func-

tion. Since the first term of Q(β) is already convex, we only need to consider

the nonconvex penalty function pλ(|βj|). Suppose the current value of β is

β0 = (β0
1 , . . . , β

0
d)
T , then the penalty function can be approximated by

pλ(|βj|) ≈ pλ(|β0
j |) +

1

2

p′λ(β
0
j )

|β0
j |

(β2
j − (β0

j )
2) for βj ≈ β0

j . (2.17)

Then the minimization problem of (2.5) is reduced to a quadratic optimiza-

tion program which can be solved by iteratively computing ridge regression

β̂1 = {XTX + nΣλ(β
0)}−1XTy, (2.18)

where Σλ(β
0) = diag{p′j,λ(|β0

1 |)/|β0
1 |, . . . , p′j,λ(|β0

d |)/|β0
d |}. Considering that

the ridge regression cannot select significant variables automatically, we set

the estimated coefficient β̂j = 0 if it is very close to 0.

Furthermore, LQA can be extended to any smooth loss function, denoted by

l(β), other than least square loss, where the objective function becomes

l(β) + n
d∑
j=1

pj,λ(|βj|), (2.19)

In this case, we need first locally approximate l(β) by the quadratic function

l(β0) +∇l(β0)T(β − β0) +
1

2
(β − β0)T∇2l(β0)(β − β0)

+
1

2
nβTΣλ(β

0)β, (2.20)

then apply Newton-Raphson algorithm to get the minimizer of (2.19). Specif-

ically, the LQA algorithm for (2.19) is described as follows:

1) Set the initial value β0 of β̂, e.g. unpenalized least square estimate.

2) For βj close to β0
j , and β0

j is not close to 0, approximate the objective

function (2.19) based on (2.20) and (2.17).
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3) Apply the Newton-Raphson algorithm to the quadratic function ob-

tained in 2) to update β0
j , and delete a variable xj when |β0

j | < ε. Often

ε = 0.5× Standard Error.

4) Iterate between 2) and 3) until convergence.

The LQA algorithm converges in a quadratic rate, which is the same as that

of the modified EM (Lange, 1995).

2. Local Linear Approximation (LLA):

A better approximation to the nonconvex penalty functions is the local linear

approximation (LLA, Zou and Li, 2008):

pλ(|βj|) ≈ pλ(|β0
j |) + p′λ(|β0

j |)(|βj| − |β0
j |) for βj ≈ β0

j , (2.21)

since it is the tightest convex majorant of the concave function on [0,∞).

Figure 2.3 demonstrates the approximations to SCAD penalties with LQA

and LLA.

Figure 2.3. LQA (dotted) and LLA (dashed) to the SCAD penalty. (Fan and Lv, 2009)

With LLA, the nonconvex PLS can be transformed to an iteratively weighted

penalized L1 regression, which can be solved by the quadratic programming

(Osborne, Presnell and Turlach, 2000), or a fast and efficient Least Angle

Regression (LARS) algorithm (Efron et al., 2004). The idea of LARS is that

it starts from a large λ that selects only one predictor having the largest

correlation r1 with the response, and decreases λ until the second predictor
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is selected, where the selected variable has the same correlation r1 with the

current working residual, and so on so forth. It is shown to generate the

same piecewise linear solution path in λ as LASSO, and can be modified for

Adaptive LASSO.

There are many other powerful algorithms for the PLS problems, e.g., Fu

(1998), Daubechies, Defrise and De Mol (2004), and Wu and Lang (2008) proposed

a coordinate descent algorithm (CD) that can be applied to the Group LASSO,

penalized likelihood, etc.; Kim, Choi, and Oh (2008) developed a DC-CCCP al-

gorithm for SCAD penalty on high dimensions, which will be reviewed in next

section; Zhang (2009) advocated the PLUS algorithm for computing a solution

path for the PLS with quadratic spline penalties such as SCAD and MCP; The

Iterative Coordinate Ascent algorithm (ICA, Fan and Lv, 2009) and the Iterative

Conditional Maximization algorithm (ICM, Zhang and Li, 2009) were introduced

to deal with general nonconvex penalties, among others.

2.1.2.3 Choice of Tuning Parameters for PLS

The choice of tuning parameters plays a substantial role of controlling the model

complexity in PLS. For instance, if we set λ = 0, the PLS is reduced to OLS

and all the variables are selected into the model; If λ = ∞, the penalty part

of (2.5) becomes ∞ and none of the variables is selected. To choose a best λ

between these two extreme cases, the classical criteria introduced in section 2.1.1

are often used. Specifically, for a given λ, compute the PLSE β̂λ of the coefficients

based on a penalty function in section 2.1.2.1 and an algorithm in section 2.1.2.2,

then calculate the value of certain selector using β̂λ based on the classical variable

selection criteria. See details in Craven and Wahba (1979), Fan and Li (2001), Li

et al. (2006), and Wang et al. (2007b). Some of the selectors are listed below:

AIC selector: AIC(λ) = ‖y −Xβ̂λ‖2 + 2dfλσ̂
2.

BIC selector: BIC(λ) = ‖y −Xβ̂λ‖2 + log(n)dfλσ̂
2.

GCV selector: GCV (λ) = 1
n
‖y −Xβ̂λ‖2/(1− dfλ/n)2.



www.manaraa.com

18

In the selectors above, the degree of freedom of the estimated model dfλ is generally

defined by

dfλ = tr
(
Xλ(X

T
λXλ + nΣλ)

−1XT
λ

)
,

where Xλ is the design matrix of the model corresponding to a given λ, and

Σλ = diagβ̂j,λ 6=0{p′λ(|β̂j,λ|)/|β̂j,λ|}, with β̂j,λ being the jth component of the PLSE

β̂λ. Another way to model the degree of freedom is simply using the number of

nonzero predictors

dfλ =
d∑
i=1

I(β̂j,λ 6= 0).

Therefore, for a series of grid points (λ1, . . . , λM) and a selector, we can obtain M

values of the selector, and the optimal λ is chosen to minimize them.

2.2 Statistical Methods for High or Ultrahigh

Dimensions

High or ultrahigh dimensional data analysis has gained much popularity in the

modern scientific field with the development of data collecting technology, ranging

from genome-wide association studies (GWAS) to economics and finance. In this

thesis, by high dimension we refer to the dimensionality of covariates p = O(nα)

for some α > 0, while the ultrahigh dimension means p = O(exp(an)) for some

a > 0. And from this section on, the letter p no longer stands for the submodel

size from the full d-dimensional model as in the previous section, rather it becomes

the high or ultrahigh dimension which is far larger than the sample size n. And

we use d as the moderate dimensionality, often d = o(n).

When the dimension of predictors are much larger than the sample size, the

traditional statistical procedures are challenged in terms of statistical accuracy,

model interpretability and computational complexity, and the penalized regression

methods introduced in last section may fail for high or ultrahigh dimensional data

analysis. To address these issues, recall that the existing literature can be loosely

divided into two categories: One is the two-stage approach, and the other aims

to simultaneously identify and estimate the underlying model structure through a

single step of regularized regression.
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2.2.1 Independent Screening Procedures

In this section, we focus on the first step of the two-stage approach, where inde-

pendent screening procedures are used to screen the ultrahigh dimensional data,

by ranking features of predictors according to their marginal utilities.

2.2.1.1 Sure Independence Screening (SIS)

Fan and Lv (2008) proposed a sure screening method based on a correlation learn-

ing, called the Sure Independence Screening (SIS), and developed its sure screening

property in linear model setting.

Consider the linear model (2.1), but now the dimension of x becomes p >> n,

leading to ultrahigh dimensionality. The goal of SIS is to reduce dimensionality

p from a huge scale (e.g. exp(O(nξ)) for some ξ > 0) to a moderate scale d (e.g.

o(n)) by a fast and efficient method described below.

Let ω = (ω1, . . . , ωp)
T be the p-vector obtained by the componentwise regres-

sion

ω = XTy. (2.22)

For the sake of simplicity, assume all predictors are standardized to have sample

mean 0 and standard deviation 1, hence ω is really a vector of marginal correlations

of predictors with the response variable. SIS defines a submodel

Mγ = {1 ≤ j ≤ p : |ωj| is among the first [γn] largest of all} (2.23)

for any given γ ∈ (0, 1). Then the full model {1, . . . , p} is shrunken down to

the submodel Mγ with size d = [γn] < n by ranking the marginal correlations

ω1, . . . , ωp.

SIS is shown to possess the sure screening property that the submodel chosen

by the aforementioned method contains the true model with probability tending

to one. More precisely, let M∗ = {1 ≤ j ≤ p : βj 6= 0} be the true sparse model

with nonsparsity rate s = |M∗|, and log p = O(nξ) for some ξ > 0. Suppose the

following regularity conditions are satisfied:

C1. Denote zi = Σ−1/2xi and Z = XΣ−1/2, where Σ = cov(xi). Then Z has a
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spherically symmetric distribution and satisfies the concentration property,

i.e., there exist some c, c1 > 1 and C1 > 0 such that

P (λmax(p̃
−1Z̃Z̃T) > c1 and λmin(p̃−1Z̃Z̃T) < 1/c1) ≤ e−C1n

holds for any n × p̃ submatrix Z̃ of Z with cn < p̃ ≤ p, where λmax(·) and

λmin(·) are the largest and smallest eigenvalues of a matrix, respectively.

C2. var(y) = O(1) and for some κ ≥ 0 and c2, c3 > 0,

min
j∈M∗

|βj| ≥
c2
nκ

and min
j∈M∗

|cov(β−1j y, xj)| ≥ c3.

C3. There are some τ ≥ 0 and c4 > 0 such that λmax(Σ) ≤ c4n
τ , i.e., the strong

collinearity is ruled out.

C4. The random noise ε ∼ N(0, σ2) for some σ > 0.

Theorem 1. (sure screening property) Under the regularity conditions, and if

2κ + τ < 1, then there exists some θ < 1 − 2κ − τ such that when γ ∼ cn−θ with

c > 0, we have

P (M∗ ⊂Mγ) = 1−O(exp(−Cn1−2κ/ log n))

for some C > 0.

The sure screening property implies P (M∗ ⊂Mγ)→ 1 as n→∞.

Therefore, it is reasonable to work onMγ to further select significant variables

and identify the underlying model structure in the second step of the two-stage

approach. Specifically, based on the submodel

y = XMγβ + ε,

where β = (β1, . . . , βd)
T, becomes d-dimensional, all the well-developed moderate

dimensional techniques can be applied, such as SCAD (Fan and Li, 2001), adaptive

LASSO (Zou, 2006), among others. The simulation results show that SIS-SCAD

performs the best and generates much smaller and more accurate models.
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Remark: SIS does have some drawbacks, for instance, some unimportant

predictors are selected due to its strong correlation with other important predictors,

or an important predictor might be missed because it is only jointly correlated

with the response but not marginally correlated, or the issue of collinearity, etc.

To overcome these problems, an Iterative SIS (ISIS) is proposed to select the d

predictors in l steps, where in each step, we use the regression residual from the

model selected in the previous iteration as the new response, and conduct SIS.

All the SIS based variable selection methods can be then modified by ISIS based

variable selection.

2.2.1.2 Aggressive Betting Using SIS

The SIS requires strong regularity conditions, for instance, the design matrix

should satisfy the concentration property, the smallest nonzero component of the

signal should be greater than a threshold, the random noise is assumed normality,

etc. To relax the conditions, Xue and Zou (2011) introduced a new method called

Aggressive Betting (AB) using the SIS for both sparse noiseless signal recovery

and sparse recovery with noise. They showed that AB possesses the exact recov-

ery property for the sparse noiseless signal recovery, and enjoys the sure screening

property for the contaminated linear system when applied together with robust

compressed sensing (Candes et al., 2006).

First consider the underdetermined linear equations system without noise

yn×1 = Xn×pβp×1,

where p >> n and X is referred to as the sensing matrix. The sparsest but

computationally infeasible solution is

min ‖β‖L0 subject to y = Xβ. (2.24)

Xue and Zou (2011) advocated the Aggressive Betting (AB) based on SIS, which

yields the equivalent solution to (2.24) and is computationally efficient. The algo-

rithm is divided into two steps:

Step1. Define ω as in (2.22) and find the index set M1 by letting γ = 1 in (2.23).
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Then we obtain a new n×n sensing matrix XM1 and the new corresponding

coefficient vector βM1 , where XM1 is invertible almost surely if X is a random

sensing matrix (Candes and Tao, 2005). Thus, we can rewrite the linear

system as

yn×1 = XM1βM1 .

Step2. Compute Z = X−1M1
y, then under mild conditions, Z is exactly equal to βM1 ,

and βMc
1

= 0. This is called the Exact Recovery Property of AB.

In statistics, instead of the foregoing noiseless system, a contaminated linear

system is often considered:

yn×1 = Xn×pβp×1 + εn×1. (2.25)

Candes et al. (2006) advocated the sparsest but computationally expensive solu-

tion, called Robust Compressed Sensing, given by

min ‖β‖L1 , subject to ‖y −Xβ‖L2 ≤ ν, (2.26)

where ν denotes the size of the error term ε. Xue and Zou (2011) proposed a new

computationally efficient method for stable signal recovery from model (2.25) in

the following two steps:

Step1. (Aggressive Betting)

Implement the first step in AB to get the new model

y = XM1βM1 + ε. (2.27)

Step2. (Robust Compressed Sensing)

Apply the robust compressed sensing (2.26) to the reduced model (2.27).

The authors showed that with high probability M1 is a secure bet such that

M∗ ⊂ M1, where M∗ = {1 ≤ i ≤ p : βi 6= 0} is the truly relevant index set.

In other words, the AB possesses the sure screening property. To establish this
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property under more relaxed conditions compared to SIS, first they introduced two

definitions.

Def1. A random variable z is sub-Gaussian if E(exp(tz)) ≤ exp(ct2) for some c > 0.

(Buldygin and Kozachenko, 1980).

Def2. An n × p matrix X is a sub-Gaussian sensing matrix with a scale factor σ

if its entries are independent random variables with mean 0 and variance ν

and E(exp(txij)) ≤ exp(t2σ2/2).

Sub-Gaussian sensing matrix comprises a broad class, such as Bernoulli and Gaus-

sian sensing matrices. The mean and variance can be achieved by transformation.

The sure screening property is described as follows:

Theorem 2. (Sure Screening Property) Suppose X is a sub-Gaussian sensing ma-

trix with factor σ and E(x2ij) = n−1, where σ2 = dn−1 and d > 2−7/2. Let ε be

a vector of sub-Gaussian errors with a common scale factor σε and σ2
ε = dεn

−1

for some dε > 2−7/2. Define κ = dεd
−1(
∑

j∈M∗ β
2
j )
−1. Then for any constant

δ ∈ (0, 0.5),

P (M∗ ⊂M1) ≥ 1− se−c1n − 2pe−c2c3n/s,

where s = |M∗|, c1 = 2−9/2d−2(δ − 0.5)2, c2 = 0.25[{1 + 4δ2d−2(1 + κ)−1}1/2 − 1],

and c3 = (minj∈M∗ β
2
j )(
∑

j∈M∗ β
2
j /s)

−1.

Remark: Compared with SIS, AB relaxes conditions significantly and gains

more theoretical insight. First, the design matrix for the SIS is required to satisfy

a concentration property which is not easy to verify in practice, and the rows are

i.i.d. random vectors; But the AB only requires the entries of X to be independent

but not identically distributed, and they may be non-Gaussian. Second, if X and ε

are both Gaussian, κ becomes the noise-to-signal ratio. And by simple calculations,

n >> (8κ + 10)c−13 s log p is sufficient to ensure the sure screening property holds

with high probability, which provides some insight into the simulation findings in

the SIS.

2.2.1.3 Screening Based on Forward Regression (FR)

Wang (2009) proposed another popular and classical variable screening procedure

for ultrahigh dimensional linear models based on the Forward Regression (FR), by
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which all truly relevant predictors are consistently included in the submodel. The

FR screening procedure starts form an empty model, and updates the models by

selecting one predictor at a time with the smallest residual sum of squares defined

below, until the number of predictors reaches the sample size n. Among the n

sequentially selected models, the BIC criterion (Chen and Chen, 2008) is applied

to choose the best model for further variable selection.

More explicitly, consider the linear model (2.1) with ultrahigh dimensionality p

and standardized x. For an arbitrary candidate model M = {j1, . . . , jM}, denote

X(M) to be the subdesign matrix corresponding toM, and F to be the full model.

The FR algorithm is implemented in the following three steps:

1) Set the initial model M(0) = ∅;

2) For the mth step, construct a series of candidate modelsM∗
j =M(m−1)⋃{j}

for all j ∈ F\M(m−1), and compute the residual sum of squares RSS∗j =

yT(In − H∗j )y, where the projection matrix H∗j = XM∗j (X
T
M∗j

XM∗j )
−1XM∗j

and In ∈ Rn×n is the identity matrix. Choose the model with the smallest

RSS∗j , denoted by M(m).

3) Iterate 2) for n times, and obtain the solution path S consisting of n nested

candidate models, i.e. S = {M(1), . . . ,M(n)}.

4) For each of the n models in S, compute the corresponding BIC score (Chen

and Chen, 2008):

BIC(M) = log(RSSM) + n−1|M|(log n+ 2 log p)

where RSSM is the RSS for modelM, and |M| is the model size ofM. The

final model is selected amongM(1), . . . ,M(n) to minimize BIC(M), denoted

by Mγ.

As to the theoretical properties, Wang (2009) proved the screening consistency of

the solution path S and the sure screening property of the BIC based selection.

Specifically, denote M∗ to be the true model as in the SIS, then under some

regularity conditions, we have P (M∗ ⊂M(m) ∈ S for some 1 ≤ m ≤ n)→ 1, and

P (M∗ ⊂Mγ)→ 1.
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2.2.1.4 Sure Independence Screening for Generalized Linear Models

The SIS (Fan and Lv, 2008) and the FR technique (Wang, 2009) provide a novel

track for dimensionality reduction through fast and efficient screening procedures

in linear model setting. However, the method cannot be directly used in the case

of discrete covariates such as GWAS or ANOVA problems, where a Generalized

Linear Regression Model (GLIM) is appropriate. Therefore, a natural question is

how to extend the SIS to GLIM. Fan and Song (2009) proposed a general version of

screening procedure by ranking the maximum marginal likelihood or its estimates,

which is suitable for GLIM.

Consider the GLIM with the canonical link. The conditional density function

is given by

f(y|x) = exp{yθ(x)− b(θ(x)) + c(y)},

where b(·) and c(·) are known functions, and θ(x) = xTβ. The p + 1 dimensional

predictor x contains as intercept in the first column, and all the other columns are

standardized without loss of generality. We take the dispersion parameter φ = 1

for simplicity, since we are only interested in the conditional mean function of y,

i.e.,

E(y|x) = b′(θ(x)) = b′(xTβ).

Fan and Song (2009) defined the maximum marginal likelihood estimator (MMLE)

β̂Mj as the minimizer of the componentwise regression

β̂Mj = (β̂Mj,0, β̂
M
j ) = argminβ0,βj

n∑
i=1

l(β0 + βjxij, yi), j = 1, . . . , p

where l(θ(x), y) = b(θ(x))−yθ(x). Then we can select a set of variables with large

β̂Mj values based on a predefined threshold γ:

Mγ = {1 ≤ j ≤ p : |β̂Mj | ≥ γ},

where γ is chosen to guarantee the sure screening property below. To dig into the

rationale of the method, Fan and Song (2009) showed that under mild conditions,

if |cov(xj, y)| ≥ c1n
−κ, j ∈ M∗ for some given constants c1 > 0 and 0 < κ < 1/2,
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where M∗ is the true model, then there exists a constant c2 such that

min
j∈M∗

|βMj | ≥ c2n
−κ.

In other words, the signal β̂Mj can be detected as long as xj and y are somehow

marginally correlated. Therefore, although the interpretations and implications of

the marginal models are biased from the joint model, this screening criterion still

maintains the nonsparse information about the joint model, and hence is suitable

for selecting significant variables.

Furthermore, the authors proved the sure screening property of this screening

method, that is, under regularity conditions, if γ = c3n
−κ, we have

P (M∗ ⊂Mγ)→ 1 as n→∞.

2.2.1.5 Screening via Generalized Correlation

The aforementioned three independent screening procedures are all model-based,

that is, the results may be misleading if the assumed underlying model structure is

wrong. This issue motives researchers to explore model free screening techniques.

Hall and Miller (2009) advocated an approach based on raking the generalized

empirical correlation between the predictors and response, which can identify sig-

nificant variables without assuming an underlying model.

For the random sample {(xi, yi), i = 1, . . . , n} from the population (x, y),

where x = (x1, . . . , xp)
T, the generalized empirical correlation between xj and y is

defined by

ψ̂j = sup
h∈H

∑
i(h(xij)− h̄j)(yi − ȳ)√∑

i(h(xij)2 − h̄2j) ·
∑

i(yi − ȳ)2
(2.28)

as an estimation of the population-version generalized correlation

ψj = sup
h∈H

cov(h(xj), y)√
var(h(xj))var(y)

,
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where H is a vector space of functions including all linear functions, and

h̄j =
1

n

n∑
i=1

h(xij), ȳ =
1

n

n∑
i=1

yij.

Note that if H is comprised of constant and linear functions, the generalized cor-

relation reduces to the Pearson correlation in SIS. Therefore, this criterion can be

viewed as the generalization of SIS to the nonlinear case.

Considering that (2.28) is not easy to compute in practice, Hall and Miller

simplifies the problem in a wide range of cases where H is a finite-dimensional

function space including the constant function. In this case, ranking ψ̂j, j =

1, . . . , p is equivalent to ranking

ϕ̂j = −min
h∈H

n∑
i=1

(yi − h(xij))
2, j = 1, . . . , p.

In this fashion, we obtain the submodel Mγ consisting of the top-ranking ϕ̂j’s.

To determine the cutoff, i.e., the submodel size, Hall and Miller (2009) introduced

a bootstrap procedure. First draw B resamples {(x(k)
i , y

(k)
i ), i = 1, . . . , n}, k =

1, . . . , B, from the original sample {(xi, yi), i = 1, . . . , n}, say, B = 1000. For each

resample {(x(k)
i , y

(k)
i ), i = 1, . . . , n}, compute ϕ̂j corresponding to xj, j = 1, . . . , p,

and record their rankings r
(k)
j , j = 1, . . . , p. Therefore, for each predictor xj, a set

of rankings r
(1)
j , . . . , r

(B)
j is obtained based on the B resamples, and so is its 1− α

approximated confidence interval (rj,−, rj,+), where the approximated argument

comes from the discreteness of rankings. The predictor xj is selected into Mγ if

rj,+ < γp, where 0 < γ < 1 is a small fraction, e.g. γ = 1/8.

Regarding to the theoretical properties, Hall and Miller (2009) stated and

proved the ranking consistency of the Generalized-Correlation-based screening pro-

cedure. Specifically, Denote I1 = {j : 1 ≤ j ≤ p, |cov(xj, y)| ≤ c1(n
−1 log n)1/2}

and I2 = {j : 1 ≤ j ≤ p, |cov(xj, y)| ≥ c2(n
−1 log n)1/2}. Then under regularity

conditions, if c1 is sufficiently small and c2 is sufficiently large, all the indices in I2
are listed before any of the indices in I1 with probability tending to one.

In addition to the four methods introduced above, there exist many other screening

methods in literature. For instance, Meinshausen and Yu (2009) demonstrated that
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LASSO can be used as the screening procedure under mild conditions; Fan, Sam-

worth and Wu (2009) extended Iterative SIS (ISIS) to a general pseudo-likelihood

framework without requiring explicit definition of residuals; Zhu, Li, Li and Zhu

(2011) proposed a model-free feature screening, called the Sure Independent Rank-

ing and Screening (SIRS), among others. All these procedures provide powerful

tools to reduce the ultrahigh dimensionality p down to a moderate scale d at the

first step of the two-stage approach. Subsequent variable selection methods can

now be applied to refine the submodel chosen by these procedures as well as to

estimate the coefficients. The two-stage approach is illustrated in Figure 2.4.

Figure 2.4. Illustrate the two-stage approach for ultrahigh dimensional variable selection.

2.2.2 Single-Step Regularized Regression for Ultrahigh Di-

mensional Problems

In addition to the two-stage approach above, another efficient procedure to deal

with high or ultrahigh dimensionality is the single-step regularized regression,

through which we can simultaneously identify and estimate the underlying model

directly from the full model with dimensionality p.

2.2.2.1 Dantzig Selector (DS)

Candes and Tao (2007) proposed the Dantzig Selector (DS) for the linear re-

gression model (2.2) with ultrahigh dimensionality p and Gaussian random noise

ε ∼ N(0, σ2In), which is defined as a solution of the following minimization prob-
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lem:

min
β
‖β‖1 subject to ‖XT(y −Xβ)‖∞ ≤ λ, (2.29)

where λ > 0 is the tuning parameter, and ‖·‖∞ refers to the L∞ norm, by which the

above expression measures the maximum absolute covariance between a predictor

and the residual vector y−Xβ to control model fitting, and is indeed a relaxation

of the normal equation XTy = XTXβ.

Due to the convexity of DS program, its computation is tractable by recasting

it as a linear program:

min

p∑
j=1

uj subject to −uj ≤ βj ≤ uj, j = 1, . . . , p and

−λσ1 ≤ XT(y −Xβ) ≤ λσ1,

where the optimization variables become u and 1 is a p-dimensional vector of ones.

To dig into the theory behind DS, the Uniform Uncertainty Principle (UUP,

Candes and Tao, 2006) is required, which informally states that all n×m submatri-

ces of design matrix X are uniformly close to orthonormal matrices, where m ≤ S,

and S is comparable to the number of truly nonzero coefficients. Under UUP and

other mild conditions, the authors proved the oracle inequality of DS, indicating

that DS estimate β̂ mimics the risk of the oracle estimator up to a logarithmic

factor of p: If we choose λ =
√

2 log p/n, then with large probability, we have

‖β̂ − β0‖22 ≤ c2λ2(σ2 +

p∑
i=1

min(β2
i , σ

2)),

where β0 is the vector of true coefficients, and c is a constant.

2.2.2.2 SCAD on High Dimensions

The SCAD penalized regression has been reviewed in last section, which possesses

many desirable properties, including unbiasedness, sparsity, continuity, and oracle

property. Kim, Choi, and Oh (2008) further studied SCAD on high dimensions

where p = O(nα) for some α > 0. They developed an efficient optimization
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algorithm for finding a local minimum of the PLS with SCAD penalty, and showed

that SCAD still has nice properties on high dimensions.

To address the issue of computational complexity for high dimensional variable

selection, the authors carefully studied the difference convex penalties such as

SCAD, where the penalty functions can be expressed as the difference of two

convex functions. Specifically, the SCAD penalty (2.12) can be decomposed as

pλ(|β|) = λ|β| − Jλ(|β|),

where the second term, which turns out to be convex, is obtained by subtracting

pλ(|β|) from the L1 penalty λ|β|. The original SCAD penalty and its convex

decomposition are demonstrated in Figure 2.5.

Figure 2.5. The SCAD penalty and its convex decomposition when a = 3.7 and λ = 0.5.

(Kim, Choi, and Oh, 2008)

By the decomposition above, the penalized loss function in (2.5) can be written

as

Q(β) =

[
1

n
‖y −Xβ‖2 + λ‖β‖1

]
−

[
p∑
j=1

Jλ(|βj|)

]
, (2.30)

which is also a difference convex function. In (2.30), We use p instead of d in

(2.5) to indicate the high dimensionality. The authors developed a Difference

Convex Algorithm based on the CCCP algorithm proposed by An and Tao (1997)
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(DC-CCCP), which can be applied to iteratively update the solution by locally

approximating (2.30) with

Q(β) ≈
[

1

n
‖y −Xβ‖2 + λ‖β‖1

]
−

[
p∑
j=1

∇Jλ(|βcj |)βj

]
, (2.31)

where βcj is a current solution of βj in each iteration. Specifically, the DC-CCCP

algorithm for SCAD penalty is described as follows:

1) Take the initial value βc = 0;

2) Find the minimizer β of Q(β) in (2.31), and set βc = β;

3) Iterate 2) until convergence.

One appealing property of DC-CCCP algorithm is that the computing time and

convergence do not rely on the initial value, while many other algorithms such as

LQA and LLA do require a good initial estimator. And it turns out that DC-

CCCP might also be used in any other PLS problem as long as the penalty is

difference convex function, such as MCP.

Although by DC-CCCP, we only obtain the local minimizer of Q(β) in (2.31),

Kim, Choi, and Oh (2008) proved that SCAD on high dimensions based on this

algorithm still possesses the oracle property, in the sense that the oracle esti-

mator defined below has a large probability to lie in the set of local minimiz-

ers. More explicitly, assume the true coefficient vector β0 = (β10,0), where

β10 = (β10, . . . , βq0) with dimension q is the truly relevant coefficient. And corre-

spondingly divide the fixed design matrix X into two parts (X1,X2), the oracle

estimator is then defined by β̂o = (β̂
(1)
o ,0), where β̂

(1)
o = (XT

1 X1)
−1X1y. More-

over, denote C(i, j) = XT
i Xj/n for i, j = 1, 2, and x(j) ∈ Rn, j = 1, . . . , p, to be

the jth column of the design matrix X. The following regularity conditions are

needed to prove the oracle property:

C1. There exists M1 > 0 such that

1

n
xT
(j)x(j) ≤M1, for all j = 1, . . . , p and all n.

C2. There exists M2 > 0 such that αTC(1, 1)α ≥M2 for all α such that ‖α‖22 = 1.
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C3. q = O(nc1) for some 0 < c1 < 1.

C4. There exist constants c2 and M3, c1 < c2 ≤ 1 such that

n(1−c1)/2 min
j=1,...,q

|βj0| ≥M3.

Under the foregoing regularity conditions, the oracle property of SCAD on high

dimensions where p = O(nα) is established as follows.

Oracle Property. Let A be the set of local minima of (2.30) with the SCAD

penalty. Assume that E(εi)
2k <∞ for an integer k > 0, λ = o(n−(1−(c1−c2))/2) and

p(
√
nλ)−2k → 0, then

P (β̂o ∈ A)→ 1.

The authors further pointed out two stronger conclusions by adding some addi-

tional conditions. First, provided that εi’s are i.i.d. Gaussian random variables, the

SCAD also has the oracle property on ultrahigh dimensions where p = O(exp(c3n))

for some c3 > 0. Another conclusion is drawn under moderate dimensionality with

p ≤ n, where the global minima of (2.30) with SCAD penalty equates the oracle es-

timator with probability tending to one under mild conditions, i.e. P (β̂ = β̂o)→ 1,

where β̂ is the global minima of the PLS based on SCAD.

Many other regularized regression techniques for high or ultrahigh dimensional

problems were developed recently in literature, besides the Danzig selector and

SCAD on high dimensions introduced here. Greenshtein and Ritov (2004) showed

that the LASSO-type procedures are persistent for high dimensionality; Mein-

shausen (2007) presented similar results for ultrahigh dimensionality with finite

nonsparsity size; The consistency results of LASSO on high dimensions were es-

tablished in Donoho, Elad and Temlyakov (2006) Meinshausen and Buhlmann

(2006), Wainwright (2006), etc.; Huang, Ma and Zhang (2008) considered Adap-

tive LASSO when a consistent initial estimator is available; Candes, Wakin and

Boyd (2007) proposed weighted L1 minimization to enhance the sparsity of the

Dantzig selector; Efron, Hastie and Tibshirani (2007), and Bickel, Ritov and Tsy-

bakov (2008) showed the asymptotic equivalence of LASSO and Dantzig selector

under a sparsity scenario, among others.
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2.3 Statistical Methods for Varying Coefficient

Models

In the last two sections, we reviewed various techniques for selecting significant vari-

ables and estimating the associated coefficients mainly under linear model setting.

However, linear models are often unrealistic in applications, and mis-specification

of the data mechanism by a linear model could lead to large bias. To address

these issues, nonparametric modeling and semiparametric modeling are developed

in literature, among which varying coefficient modeling arises in many contexts.

The varying coefficient model is a natural extension of linear model to enhance

the model flexibility and interpretability, where the coefficients of the linear models

are replaced by smooth nonparametric functions and hence the regression coeffi-

cients are allowed to vary as functions of certain covariate. The model is defined

as follows:

y = xTβ(u) + ε (2.32)

where y is the response, x is the d-dimensional predictor, u is the univariate index

variable, and ε ∈ R1 is the random noise satisfying E(ε|x, u) = 0 almost surely.

β(u) = {β1(u), . . . , βd(u)}T ∈ Rd is the coefficient vector, which is a smooth

function of u to be estimated.

In this section, we review some standard statistical methods for the varying

coefficient model, including the estimation procedure, hypothesis testing, and vari-

able selection. These classical methods serve as the basis of extending the high or

ultrahigh dimension techniques for linear models to varying coefficient models.

2.3.1 Preliminary: Nonparametric Smoothing

The estimation procedures for varying coefficient models are based on the pre-

liminary knowledge about the nonparametric smoothing. Therefore, we briefly

introduce the smoothing techniques for nonparametric regression, which further

relaxes the model structure by assuming no parametric form of the regression

function. Explicitly, suppose (xi, yi), i = 1, . . . , n, is a bivariate random sample
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from the nonparametric model

y = m(x) + ε (2.33)

where ε is random noise with E(ε|x) = 0 and var(ε|x) = σ2(x). m(x) is the mean

function we are interested in. There are two commonly used local smoothing tech-

niques to estimate m(x) without assuming its parametric form: kernel smoothing

and local polynomial smoothing.

2.3.1.1 Kernel Smoothing

Kernel Smoothing is also referred to as local constant approximation, since the

idea is to treat m(x) as a constant θ, where θ certainly relies on x. Define the

estimator θ̂ to be

θ̂ = argminθ

n∑
i=1

(yi − θ)2ωi(x), (2.34)

where ωi(x), depending on x, is used to assign different weights to different data

points, and usually a point closer to x has more information about m(x) hence is

worth taking more weight. One can easily get the solution of (2.34):

θ̂ =

∑n
i=1 ωi(x)yi∑n
i=1 ωi(x)

. (2.35)

We need choose the weight function in (2.35) to get the explicit form of the solution.

There exist in literature two popular kernel regression estimators with different

choices of weight:

1. NW estimator:

Nadaraya (1964) and Watson (1964) advocated the Nadaraya-Watson (NW)

estimator based on the weight function

ωi(x) = Kh(xi − x), (2.36)
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hence the NW kernel regression estimator for m(x) is

θ̂ =

∑n
i=1Kh(xi − x)yi∑n
i=1Kh(xi − x)

, (2.37)

where Kh(u) = K(u/h)/h with bandwidth h, and K(u) is a Kernel function

often satisfying
∫
K(u)du = 1. The frequently used Kernel functions are

listed below:

– Gaussian Kernel: K(t) = 1√
2π

exp(−t2/2)

– Uniform Kernel: K(t) = I(|t| < 1/2)

– Epanechikov Kernel: K(t) = 0.75(1 − t2)+, t ∈ [−1, 1], where a+ =

aI(a > 0)

– Biweight Kernel: K(t) = 0.9375(1− t2)2+, t ∈ [−1, 1]

– Triweight Kernel: K(t) = 1.09375(1− t2)3+, t ∈ [−1, 1].

For example, by taking the weight function to be uniform kernel, the NW

estimator becomes the running local average, resulting in the unweighted

K-nearest neighbor (KNN) estimator. However, as is shown in Marron and

Nolan (1988), the kernel functions is not essential in the nonparametric es-

timation, yet the choice of bandwidth h, which will be discussed shortly, is

crucial to the performance of the estimator.

2. GM estimator:

Gasser and Müller (1984) introduced another choice of weight function:

ωi(x) =

∫ si

si−1
Kh(u− x)du, (2.38)

where si = (x(i) + x(i+1))/2, with x(i) being the ith order statistic of x. For

convention, x(0) = −∞ and x(n+1) = +∞. Note that the denominator of

(2.35) is 1 with this definition of weight, hence the GM estimator of m(x) is

θ̂ =
n∑
i=1

(∫ si

si−1
Kh(u− x)du

)
yi. (2.39)

The details for GM estimator can be found in Müller (1988).
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2.3.1.2 Local Polynomial Regression

In kernel smoothing or local constant smoothing, we approximate m(x) with a

constant determined by x. A natural extension is to use polynomial approxima-

tion instead of constant, resulting in the local polynomial regression, which is

systematically studied by Fan and Gijbels (1996).

Suppose the mean function m(x) of the nonparametric model (2.33) is smooth

and its (q+ 1)th derivative exists, and we want to estimate m(x) for a given point

x0. We can locally approximate m(x) using Taylor expansion at x0:

m(x) ≈ m(x0) +m′(x0)(x− x0) + . . .+
m(q)(x)

q!
(x− x0)q

, β0 + β1(x− x0) + . . .+ βq(x− x0)q (2.40)

, zTβ.

where β = (β1, . . . , βp)
T, z = {1, x− x0, . . . , (x− x0)q}T, and

m(j)(x0) = j!βj. (2.41)

Thus m(x0) and its derivatives are estimated through β̂, which is defined similar

to the NW estimator:

β̂ = argminβ

n∑
i=1

(
yi − zT

i β
)2
Kh(xi − x0), (2.42)

where zi = {1, xi − x0, . . . , (xi − x0)
q}T. This is really a weighted least squares

problems, with the equivalent matrix form

β̂ = argminβ(y − Zβ)TW(y − Zβ), (2.43)

where y = (y1, . . . , yn)T, Z = (z1, . . . , zn)T, and W is a n×n diagonal matrix with

the ith diagonal component Kh(xi − x0). The solution of (2.43) is given by

β̂ = (ZTWZ)−1ZTWy.

Therefore, not only m(x0), but also its derivatives can be estimated through β̂ us-
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ing (2.41), which is one appealing feature of local polynomial smoothing over kernel

smoothing. When q = 1 in (2.40), the local polynomial regression reduces to local

linear approximation, one of the most frequently used nonparametric smoothing

techniques in literature.

2.3.1.3 Choice of Bandwidth

As was mentioned before, the choice of bandwidth h in nonparametric regression

is essential. Specifically, if h is chosen too small, we pay too much attention to the

data in the local neighborhood and undersmoothly estimate the mean function;

While if h is too large, we tend to miss some fine features of the data and yield an

oversmoothed estimate. Then how to choose an optimal bandwidth? A popular

method is the Mean Squared Error (MSE) criterion, which measures how far apart

of an estimate from its true value, and can be decomposed into the summation

of variance and the squared bias. Mathematically, suppose θ is the parameter of

interest with the estimate θ̂, then the MSE is defined to be

MSE(θ̂) , E(θ̂ − θ)2 = var(θ̂) + bias2(θ̂),

where bias(θ̂) = E(θ̂)− θ. In the case of nonparametric regression where m(x) is

the function to be estimated,

MSE(m̂(x)) , E(m̂(x)−m(x))2 = var(m̂(x)) + bias2(m̂(x)).

By this definition, however, the MSE only measures the performance of m̂(x) at

a fixed point x. To take advantage of all the data points, the Mean Integrated

Square Error (MISE) is proposed to integrate the MSE over x’s:

MISE(m̂(·)) =

∫
MSE(m̂(x))f(x)dx,

where f(x) is the density function of x, which can be estimated by a Kernel Density

Estimate (KDE):

f̂(x) =
1

n

n∑
i=1

Kh(xi − x).
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Clearly MISE is determined by the bandwidth h. Therefore, the optimal band-

width h is chosen to minimize MISE. To be more specific, for each bandwidth h,

compute the corresponding MISE. Then for a series of grid points (h1, . . . , hM),

the optimal h is chosen to be

hopt = argminh1,...,hMMISE(m̂(·)). (2.44)

In practice, we calculate MSE or MISE based on the pointwise asymptotic variance

and bias, which are summarized in Table 2.1 for some nonparametric estimators

introduced in the previous two sections.

Table 2.1. Pointwise asymptotic bias and variance.

Method Bias Variance

NW estimator {m′′(x) + 2m′(x)f ′(x)
f(x)

}bn Vn
GM estimator m′′(x)bn 1.5Vn
Local linear m′′(x)bn Vn

In Table 2.1, bn and Vn are defined by

bn =
1

2
h2
∫
u2K(u)du, Vn =

σ2(x)

f(x)nh

∫
K2(u)du.

In addition, m′(x), m′′(x), and σ2(x) can be estimated by pre-modeling. For

example, we first fit a “wrong” but convenient model by approximating m(x) with

a polynomial function, i.e.

y = m(x) = α0 + α1x+ . . .+ αqx
q + ε. (2.45)

When q = 4, which is sufficient in practice,

m̂′(x) = α̂1 + 2α̂2x+ 3α̂3x
2 + 4α̂4x

3, m̂′′(x) = 2α̂2 + 6α̂3x+ 12α̂4x
2,

and σ̂2(x) is taken to be the mean squared error of model (2.45). In this fashion,

MISE can be estimated and the optimal bandwidth is obtained by (2.44).
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2.3.2 Estimation Methods for Varying Coefficient Models

From this section on, we get back to the varying coefficient model (2.32). The

primary task is to estimate its coefficient function β. There are basically three es-

timating methods: The first one is the Kernel-local Polynomial Smoothing, which

is studied by Wu et.al (1998), Hoover et al. (1998), Fan and Zhang (1999), Kauer-

mann and Tutz (1999), and related to the local polynomial regression reviewed in

section 2.3.1.2. The second technique is the polynomial spline by Huang et al.

(2002, 2004) and Huang and Shen (2004). The last is smoothing spline, proposed

by Hastie and Tibshirani (1993) and studied in Hoover et al. (1998) and Chiang

et al. (2001).

In this thesis, we mainly introduce the first approach, kernel-local polynomial

smoothing, which contains two categories. One is to estimate the coefficient func-

tions through a single step of local polynomial regression, which is simple and

useful, but implicitly assumes the same degree of smoothness of all βj’s. There-

fore, the other category, called two-step estimation, arises to address this issue.

2.3.2.1 One-step Estimation

Suppose {(xi, yi, ui), i = 1, . . . , n} is the random sample from the varying co-

efficient model (2.32). For each given u, approximate the coefficient functions

βj(ui), j = 1, . . . , d locally as

βj(u) ≈ βj(u) + β
′

j(ui − u)

, aj + bj(ui − u)

for ui in a neighborhood of u. Similar as the Local Polynomial Regression (2.42),

we consider the following weighted least squares problem:

n∑
i=1

{
yi −

d∑
j=1

{aj + bj(ui − u)}xij

}2

Kh(ui − u).
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Then β̂(u) is obtained corresponding to â = (â1, . . . , âd)
T. Fan and Zhang (1999)

provided the matrix form of solution:

β̂(u) = (Id,0d)(Γ
TWΓ)−1ΓTWy,

where Id is the d× d identity matrix, 0d is the d× d matrix with each entry being

0, and other quantities are defined by

W = diag(Kh(u1 − u), . . . , Kh(un − u)), Γ = (X,UX)

X = (x1, . . . ,xn)T, U = diag(u1 − u, . . . , un − u). (2.46)

The bandwidth h of the kernel function is chosen to minimize the MISE comprised

of bias and variance, which are derived by Carroll et al. (1998) and Fan and Zhang

(1999):

bias(β̂(u)) = µ2β̂
′′(u)h2/2, var(β̂(u)) = {nhf(u)E(xxT|u)}−1ν0σ2(u).

where µi =
∫
uiK(u)du and νi =

∫
uiK2(u)du. Their estimates were computed

by Fan and Zhang (2000) and systematically studied by Fan and Zhang (2008):

b̂ias(β̂(u)) = (Id,0d)(Γ
TWΓ)−1ΓTWτ̂

v̂ar(β̂(u)) = (Id,0d)(Γ
TWΓ)−1(ΓTWΓ)(ΓTWΓ)−1(Id,0d)

Tσ̂2(u), (2.47)

where the ith element of τ̂ is 1
2
xT
i {β′′(u)(ui− u)2 + 1

3
β(3)(u)(ui− u)3}, with β′′(u)

and β(3) estimated by local cubic fitting with a pilot bandwidth h∗; and σ̂2(u) is

obtained by

σ̂2(u) =
yT{W∗ −W∗Γ∗(Γ∗TW∗Γ∗)−1Γ∗TW∗}y
tr{W∗ − (Γ∗TW∗Γ∗)−1(Γ∗TW∗2Γ∗)}

,

where W∗ is W in (2.46) with h replaced by h∗, and Γ∗ = (X,UX,U2X,U3X).

Furthermore, Zhang and Lee (2000) also proved the asymptotic normality of

β̂(u), that is, under regularity conditions,

var−1/2(β̂(u))
{
β̂(u)− β(u)− bias(β̂(u))

}
D−→ N(0, Id)
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2.3.2.2 Two-step Estimation

Although the single step estimation procedure is simple and useful, it by default

assume the coefficient functions βj(u)’s admit the same degree of smoothness,

which is unrealistic under certain circumstances. Intuitively we need larger band-

width for the smoother component, aiming to obtain smoother estimate, while for

the less smoother component, smaller bandwidth is preferable. To achieve this

goal, Fan and Zhang (1999) developed a two-step estimation procedure. Without

loss of generality, we assume βd(u), which has fourth derivative, is smoother than

any βj(u), j = 1, . . . , d − 1, with existence of second derivatives. The two-step

estimation is sketched as follows.

Step1 1. Apply the one-step estimation procedure to the original model with a

small bandwidth h, then for any u, we get an initial estimator of β(u):

β̃(u) = (Id,0d)(Γ
TWΓ)−1ΓTWy,

where all the quantities are defined as (2.46).

2. Write the varying coefficient model (2.32) as

y =
d−1∑
j=1

βj(u)xj + βd(u)xd + ε. (2.48)

For j = 1, . . . , d−1, replace βj(u) in model (2.48) by the jth component

of β̃(u) above, and obtain the synthetic model

y −
d−1∑
j=1

β̃j(u)xj = βd(u)xd + ε (2.49)

with the new response ỹ = y−
∑d−1

j=1 β̃j(u)xj. Model (2.49) is ready for

the second step: reestimating βd(u) by a smoother function.

Step2 1. Since βd(u) has the fourth derivative, we approximate βd(u) by a cubic
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function

βd(ui) =
3∑

k=0

β
(k)
d (u)

k!
(ui − u)k ,

3∑
k=0

ad,k(ui − u)k

for ui in the neighborhood of u, and conduct the local cubic regression

with the objective function

n∑
i=1

{
ỹi − xid

3∑
k=0

ad,k(ui − u)k

}2

Kh2(ui − u),

where optimization variable is (ap,0, ap,1, ap,2, ap,3), and the bandwidth

h2 is chosen to be larger than h in the first step.

2. The final estimator of βd(u), which corresponds to âp,0, is computed as

β̂d(u) = eT1,4(G
TW2G)−1GTW2ỹ,

where ek,m refers to the unit vector of length m with 1 at the kth

position, and other quantities are given as follows:

ỹ = (ỹ1, . . . , ỹn)T, G = diag(x1d, . . . , xnd)Q,

W2 = diag (Kh2(u1 − u), . . . , Kh2(un − u)) ,

Q =


1 u1 − u (u1 − u)2 (u1 − u)3

...
...

...
...

1 un − u (un − u)2 (un − u)3

 .

Remark: In the second step, there is another way to get the estimate of βd(u)

which is easier to implement, where we simply smooth β̃d(ui) against ui by local

cubic modeling with bandwidth h2. Specifically, treat β̃d(u) as the new response,

denoted by y∗, and estimate the mean function of the nonparametric model

y∗ = βd(u) + ε.
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By the local polynomial regression with q = 3, the resulting final estimator of

βd(u) is

β∗d(u) = eT1,4(Q
TW2Q)−1QTW2y

∗,

where y∗ = (β̃d(u1), . . . , β̃d(un))T, and other quantities are defined as before.

In addition, the bandwidth h for the initial estimation is chosen to be small,

aiming to reduce bias in the first step. Then apply higher order smoothing with a

larger bandwidth h2 to get the final estimator of the smoother component βd(u), in

which fashion the variance can be reduced. This is the core reason that the two-step

approach always outperforms the one-step approach when estimating smoother

components.

2.3.3 Confidence Band and Hypothesis Test for Varying

Coefficient Models

The confidence band is of interest for nonparametric inference. To construct the

1− α confidence band [g1j(u), g2j(u)] for varying coefficient models, i.e.

P (g1j(u) ≤ βj(u) ≤ g2j(u), for any u ∈ D) = 1− α, j = 1, . . . , d,

where D is a compact set, the most important and challenging part is to derive

the distribution of the maximum discrepancy between the estimate and the true

coefficient function. Here we only consider the one-step estimation. Fan and Zhang

(2000) proved that the asymptotic distribution is related to exp{−2 exp(−x)},
based on which the 1−α confidence band for βj(u), j = 1, . . . , d is constructed as

β̂j(u)− b̂ias(β̂j(u))±4j,α(u), (2.50)

where 4j,α(u) =
{
dν,n + (−2 log h)−1/2[log 2− log(− log(1− α))]

}{
v̂ar(β̂j(u))

}1/2

,

dν,n = (−2 log h)1/2 + (−2 log h)−1/2 log

{ ∫
(K ′(u))2du

4π
∫
K2(u)du

}
,

and b̂ias(β̂j(u)), v̂ar(β̂j(u)) are obtained by (2.47).

In addition to the confidence band, one might be interested in testing if certain
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coefficient functions are significant in varying coefficient models, or whether they

do vary with the index variable u, or if they have some known function form. These

problems amount the null hypotheses to be parametric while the alternatives to

be nonparametric. For such tests, traditional testing can not be applied, but there

are several approaches specifically for them, among which two are introduced in

this section.

1) Generalized Likelihood Ratio Test:

Fan, Zhang, and Zhang (2001) advocated the Generalized Likelihood Ratio

Test (GLRT) for the varying coefficient model (2.32), where the model under

null hypothesis H0 is nested within that under alternative H1. Suppose

β̂0(u) and β̂1(u) are the estimated coefficient functions under H0 and H1,

respectively. The residual sum of squares RSS0 for the reduced model and

RSS1 for the full model are defined by

RSS0 =
n∑
i=1

(yi − xT
i β̂

0(u))2 and RSS1 =
n∑
i=1

(yi − xT
i β̂

1(u))2.

Then the generalized likelihood ratio

Ω = ln(H1)− ln(H0) =
n

2
log

RSS0

RSS1

≈ n

2

RSS0 −RSS1

RSS1

.

The challenge of the GLRT is the approximate distribution of Ω due to

the infinite dimension of nonparametric functions. Fan, Zhang, and Zhang

(1999) unveiled the new Wilks phenomenon with the new definition of degree

of freedom for nonparametric model. Explicitly, under mild conditions, we

have

γKΩ ∼ χ2
δ (2.51)

where δ = γK |U|(p1 − p0){K(0) − 0.5
∫
K2(u)du}/h, |U| is the range of the

index variable support U, p1 and p0 are the number of nonzero estimated

coefficients under H1 and H0, respectively; and γK is a constant which is

determined by the kernel function K(·). The values of γK for the afore-

mentioned kernels are listed in Table 2.2. Therefore, we may reject the null
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hypothesis or not based on the p-value from the distribution (3.14).

Table 2.2. The values of γK .

Kernel Gaussian Uniform Epanechnikov Biweight Triweight
γK 2.5375 1.2000 2.1153 2.3061 2.3797

2) Maximum Discrepancy

Fan and Zhang (2000) took another testing approach based on the asymptotic

distribution of the maximum discrepancy between β̂(u) and the true function

β(u). First consider the test

H0 : βj(u) = β0
j (u), v.s. H1 : βj(u) 6= β0

j (u) (2.52)

where β0
j (u) is a known function. A natural test is to check whether β0

j (u) falls

in the confidence band (2.50) or not. The authors constructed an equivalent

test statistic:

M =
√
−2 log h


∥∥∥∥∥∥ β̂j(u)− β0

j (u)− b̂ias(β̂j(u))√
v̂arβ̂j(u)

∥∥∥∥∥∥
∞

− dν,n

 (2.53)

where ‖g(u)‖∞ = supu∈U |g(u)|, and U is the support of u. They showed H0

should be rejected if M > − log(−1
2

log(1− α)).

In addition, one might also be interested in testing whether certain coefficient

function does vary with u, i.e.

H0 : βj(u) = c v.s. βj(u) 6= c. (2.54)

The difference between hypothesis (2.52) and (2.54) lies in that c is unknown

in (2.54), since it only implies the constancy of βj(u). The test statistic is

constructed in the same way as (2.53) with the same rejection criterion, but

β0
j (u) is replaced by

ĉj =
1

n

n∑
i=1

β̂j(ui).
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2.3.4 Variable Selection for Varying Coefficient Models

To conduct variable selection for the varying coefficient model (2.32), Wang and Xia

(2009) proposed a shrinkage estimation procedure, called Kernel LASSO method

(KLASSO), based on the local polynomial smoothing (Fan and Gijbels, 1996)

and the LASSO penalized regression (Tibshirani, 1996), which can simultaneously

select significant variables and estimate the coefficient function β(u). However,

since we cannot directly estimate the whole coefficient function by an explicit

form, we are specifically interested in estimating β(u) when u = u1, . . . , un, i.e.

the matrix

B = {β(u1), . . . ,β(un)}T = (b1, . . . ,bd) ,

where bj ∈ Rn×1 is the jth column of B. Wang and Xia (2009) suggested the

penalized loss function

Qλ(B) =
n∑
t=1

n∑
i=1

{yi − xT
i β(ut)}2Kh(ut − ui) + n

d∑
j=1

λj‖bj‖ (2.55)

where ‖ · ‖ is the Euclidean norm. They also proposed an iterative algorithm with

the local quadratic approximation to the penalty function (Fan and Li, 2001) to

obtain the minimizer of Qλ(B), B̂λ. That is, the (m+ 1)th-step value of B̂λ is

B̂
(m+1)
λ = {β̂(m+1)

λ (u1), . . . , β̂
(m+1)
λ (un)}T

with the tth row
(
β̂

(m+1)
λ (ut)

)T
, where

β̂
(m+1)
λ (ut) =

(
1

n

n∑
i=1

xix
T
i Kh(ut − ui) +D(m)

)−1(
1

n

n∑
i=1

xiyiKh(ut − ui)

)
,

D(m) is a d× d diagonal matrix with the jth diagonal component λj/‖b̂(m)
λ,j ‖, and

b̂
(m)
λ,j is the jth column of the mth-step value B̂

(m)
λ .

Remark: The initial value B̂
(0)
λ of the above algorithm is set to be the unpenalized

estimator B̃ = argminB∈Rn×d
{∑n

t=1

∑n
i=1(yi − xT

i β(ut))
2Kh(ut − ui)

}
. And the

tuning parameter vector λ = (λ1, . . . , λd)
T is chosen following the idea of Zou

(2006), Zhang and Lu (2007), Wang et al. (2007a), Zou and Li (2008). That is,
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λj = n1/2λ0/‖b̃j‖ with λ0 selected by the BIC-type criterion, where b̃j is the jth

column of B̃.

To develop the theoretical properties of the KLASSO estimates, the following

regularity conditions are needed:

(C1) For s > 2, E|yi|2s <∞ and E‖xi‖2s <∞.

(C2) The density function of ui, denoted by f(u), is continuous and positively

bounded away from 0 on U, where U is the support of ui.

(C3) Ω(u) = E(xix
T
i |ui = u) is nonsingular and has bounded second order deriva-

tives on U. E(‖xi‖4|ui = u) is also bounded.

(C4) The second order derivative of f(u) and σ2(u) = E(ε2i |ui = u) are bounded.

(C5) K(u) is a symmetric density function with a compact support.

(C6) The second order derivatives of coefficients β0j(u), j = 1, . . . , d are continu-

ous, where β0(u) = {β01(u), . . . , β0d(u)}T ∈ Rd is the true coefficient vector.

Under regularity conditions above, the authors stated the sparsity and oracle prop-

erty of KLASSO estimates. To establish the sparsity, we assume the true model

contains only a small number of predictors. Without loss of generality, assume the

first d0 predictors are truly important but others are not. Define the KLASSO

estimate of the relevant and irrelevant coefficient vector by

β̂a,λ(u) = {β̂λ,1(u), . . . , β̂λ,d0(u)}T ∈ Rd0

β̂b,λ(u) = {β̂λ,d0+1(u), . . . , β̂λ,d(u)}T ∈ Rd−d0 ,

respectively. Let an = max{λj : 1 ≤ j ≤ d0} and bn = min{λj : d0 < j ≤ d}.

Theorem 3. (Sparsity) Under regularity conditions (C1)-(C6), suppose h ∝ n−1/5,

n11/10an → 0, and n11/10bn →∞, then we have

P (sup
u∈U
‖β̂λ,b(u)‖ = 0)→ 1

for any d0 < j ≤ d.
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Hence the sparse solutions can be consistently produced for every irrelevant

predictors over U uniformly. To establish the oracle property, first define the

oracle estimator (i.e. the unpenalized estimator obtained under the true model)

by

β̂ora(u) =

(
1

n

n∑
i=1

xiax
T
iaKh(u− ui)

)−1(
1

n

n∑
i=1

xiayiKh(u− ui)

)
,

where xia = (xi1, . . . , xid0)
T ∈ Rd0 and xib = (xi(d0+1), . . . , xid)

T ∈ Rd−d0 .

Theorem 4. (Oracle Property) Under regularity conditions (C1)-(C6), suppose

h ∝ n−1/5, n11/10an → 0, and n11/10bn →∞, we then have

sup
u∈U
‖β̂a,λ(u)− β̂ora(u)‖ = op(n

−2/5).

Therefore, the difference between the KLASSO estimate and the oracle estimate

is negligible uniformly over U, and consequently β̂a,λ(u) shares the same asymptotic

distribution and efficiency as the oracle estimate β̂ora(u).

2.4 Estimation Procedures for Partially Linear

Models

Partially linear models are useful extension of linear models, where we allow the

response to depend on certain variable in a nonparametric form, aside from the

linear dependency of other variables. And they are essentially special cases of

varying coefficient models, with all but one coefficients not varying with the index

variable. Specifically, consider the partially linear model with the form

y = α(u) + βTx + ε, (2.56)

where y is the univariate response, α(u) is the nonparametric component, indi-

cating that y is partially explained by u, but we do not put any assumptions to

the form of α(u). β = (β1, . . . , βp)
T ∈ Rp is the p-dimensional coefficient vector

corresponding to the linear predictor x = (x1, . . . , xp)
T ∈ Rp.

Although the statistical methods for varying coefficient models can still be
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applied for partially linear models, we often adopt different strategies to analyze

these special models to enhance the accuracy and precision of the estimations.

In this subsection, we study the main estimation procedures for partially linear

models. See Chen (1988), Engle et.al (1986), Heckman (1986), Speckman (1988),

Robinson (1988), and Fan and Huang (2005) for details. We briefly review the

following estimation methods for partially linear model (2.56).

2.4.1 Difference Based Method

The only difference between model (2.56) and the well-studied linear model is the

nonparametric component α(u), which is assumed to be a smooth and continuous

function of u. Thus the intuition of difference based method (Fan and Li, 2004) is

to get rid of α(u) and transform the partially linear model to the corresponding

linear model. Assume {(ui,xi, yi), i = 1, . . . , n} is a random sample from model

(2.56), and ui’s are dense, which means ui+1 − ui is negligibly small. The random

error εi’s are independently and identically distributed with mean 0, and they are

independent with ui. The procedure is as follows:

1. Consider the sample version of model (2.56)

yi = α(ui) + βTxi + εi. (2.57)

Sort the sample by u such that u(1) ≤ u(2) ≤ . . . ≤ u(n). So the sorted sample

version of model (2.56) becomes

y(i) = α(u(i)) + βTx(i) + ε(i). (2.58)

2. Consider the (i+ 1)th subject:

y(i+1) = α(u(i+1)) + βTx(i+1) + ε(i+1). (2.59)

Subtracting model (2.58) from (2.59):

y(i+1) − y(i) = {α(u(i+1))− α(u(i))}+ βT{x(i+1) − x(i)}+ {ε(i+1) − ε(i)}.
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We assume that α(u) is a continuous and smooth function of u, and u(i+1)−
u(i) ≈ 0, hence α(u(i+1)) − α(u(i)) ≈ 0 by Taylor’s theorem. Define y∗i =

y(i+1) − y(i), x∗i = x(i+1) − x(i), and ε∗i = ε(i+1) − ε(i), then the model above

becomes

y∗i = βTx∗i + ε∗i , (2.60)

with β remaining the same while α(u) is canceled.

3. Apply the least squared method to estimate β in model (2.60):

β̂ = (X∗TX∗)−1X∗Ty∗, (2.61)

where X∗ is the design matrix for model (2.60) and y is the corresponding

response vector.

4. To estimate α(·), plug the estimate β̂ back into (2.57) and treat yi− β̂Txi ≡
y∗∗i as the new response, that is, the model of interest in this step is

y∗∗i = α(ui) + εi. (2.62)

Then we can apply any one dimensional nonparametric estimating technique

to get α̂(·), such as NW estimator, local linear estimator, local polynomial

estimator, among others, as introduced in last section.

The difference based method is simple to use; it does not need to specify the

smoothing matrix and select bandwidth when estimating the parametric part β.

However, it puts relatively strong assumptions on u and α(·). Furthermore, the

estimation of β is not asymptotically efficient by this method.

2.4.2 Back Fitting Algorithm

The idea of this algorithm (Fan and Li, 2004) is to iteratively estimate the non-

parametric part α(·) and the parametric part β. For the ease of presentation, the

same notations for y in the following procedure as the difference based method

may have different meanings.
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1. Specify an initial value of β, denoted by β̂(0). It can be obtained by the

difference based method introduced above. Thus model (2.57) is transformed

to

y∗i = α(ui) + εi, (2.63)

where y∗i = yi − β̂(0)Txi. Then α̂(0)(·), the initial estimator of α(·), can be

obtained in the same fashion as step 4 in the difference based method.

2. Based on the initial estimator of α(·), we modify the original model (2.57)

as

y∗∗i = βTxi + εi, (2.64)

where y∗∗i = yi− α̂(0)(ui). Then β can again be estimated by the least square

method based on the reduced model (2.64):

β̂ = (XTX)−1XTy∗∗. (2.65)

3. Iterate the above two steps until convergence.

The back fitting algorithm is a modified estimation procedure of difference based

method; it does not put strong assumptions on α(·) and u as difference based

method, and still easy to implement. The algorithm, however, is still not efficient

in terms of the variance of the estimation for β.

2.4.3 Profile Least Square and Profile Likelihood Approach

In the partially linear model setting, profile least square method and profile like-

lihood method (Fan and Li, 2004) are identical. The procedure is described as

follows.

1. First estimate α(·) by treating β as a nuisance parameter. Specifically, define

y∗i = yi − βTxi, where β is only a dummy variable. This is one difference

between profile least square method and back fitting algorithm – the latter
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specifies a concrete vector value as the initial estimator of β. But the trans-

formed model has the same form (2.63) as back fitting algorithm. Apply any

linear smoother Sh to estimate α(·) by

α̂β ≡ (α̂β(u1), . . . , α̂β(un))T = Shy
∗.

2. With α̂β = Shy
∗ = Sh(y −Xβ), the estimation problem now is equivalent

to minimizing

Q(β) ≡ ‖y −α−Xβ‖2 = ‖(i− Sh)y − (I − Sh)Xβ‖2,

where I is the identity matrix. It is easy to see

β̂ = (X∗∗TX∗∗)−1X∗∗Ty∗∗,

with X∗∗ = (I − Sh)X and y∗∗ = (I − Sh)y.

3. We can refit the nonparametric function α(·) by plugging in the updated

estimate β̂ above by

α̂ = Sh(y −Xβ̂).

In practice, however, it is difficult to derive the explicit form of Sh. A popular

solution is to consider Sh(y) as E(y|u), the conditional mean of y given u.

Then it can be estimated by any nonparametric estimating procedure like the

local linear estimation. The profile method provide the efficient estimates of

β.
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Chapter 3
Statistical Methods for Ultrahigh

Dimensional Varying Coefficient

Models

This chapter considers the problem of feature screening and variable selection for

ultrahigh dimensional varying coefficient models. A new conditioning-correlation

independence screening procedure (CCIS) is proposed specifically for these mod-

els. The ranking consistency and sure screening property of CCIS are established,

and they are verified empirically through the simulation studies. Furthermore, the

iterative conditioning-correlation screening procedure is developed to enhance the

finite sample performance. In the real data example, a two-stage approach for

varying coefficient models is derived – firstly CCIS is applied to reduce the ultra-

high dimensionality to the scale under sample size, and secondly several penalized

regression techniques are modified for varying coefficient models to further select

important variables as well as to estimate the coefficient functions.

3.1 Introduction

The variable selection for ultrahigh dimensional varying coefficient models is at-

tractive to researchers yet challenging to deal with, because these models assume

the number of predictors to be much larger than the sample size, and the re-
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gression coefficients to change over subjects characterized by a certain covariate.

For example, in genetic research, one might be interested in selecting the signifi-

cant single-nucleotide polymorphisms (SNPs) for explaining the body mass index

(BMI), whose effects may depend on the age of each individual. In this case,

millions of SNPs are studied, leading to an ultrahigh dimensional problem; to

guarantee the changing effect of SNPs, their coefficients are rendered to be non-

parametric functions of age. Therefore, the variable selection for such models aims

to recover the sparse nonzero coefficient functions corresponding to the significant

predictors.

Some variable selection methods have been developed for varying coefficient

models in literature. Li and Liang (2008) used a generalized likelihood ratio test

to select significant nonparametric components based on SCAD penalty (Fan and

Li, 2001). Wang et al. (2008) presented a regularized estimation procedure based

on the basis function approximations and the SCAD penalty, which can simul-

taneously select significant variables and estimate the nonzero smooth coefficient

functions. Wang and Xia (2009) proposed a shrinkage method incorporating local

polynomial smoothing (Fan and Gijbels, 1996) and LASSO penalized regression

(Tibshirani, 1996), among others. Nevertheless, most existing techniques for vary-

ing coefficient models require fixed model dimension, thus they cannot be applied

to the ultrahigh dimensionality.

To deal with the ultrahigh dimensionality, one appealing method is the two-

stage approach. First, a computationally efficient screening procedure is applied

to reduce the ultrahigh dimensionality to a moderate scale under sample size; sec-

ond, the final sparse model is recovered by a regularization method, such as the

penalized regression approach. In the first stage, several screening techniques were

advocated for various models. Fan and Lv (2008) showed that the sure indepen-

dence screening (SIS) possesses sure screening property in the linear model setting.

Hall and Miller (2009) extended the methodology from linear models to nonlin-

ear models using generalized empirical correlation learning, but it is not trivial

to choose a reasonable transformation function. Fan and Song (2010) extended

SIS to the generalized linear model by ranking the maximum marginal likelihood

estimates. Fan, Feng and Song (2011) explored the feature screening technique for

ultrahigh dimensional additive models, by ranking the magnitude of spline approx-
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imations of the nonparametric components. Zhu, Li, Li and Zhu (2011) proposed a

sure independence ranking and screening procedure to select important predictors

in the multi-index model setting. Li, Zhong and Zhu (2012) studied a model-free

screening procedure using distance correlation learning, which can deal with multi-

ple response problem and grouped predictors. However, much less have been done

for varying coefficient models. Therefore, in this paper, we develop a novel fea-

ture screening method specifically for these models to reduce dimensionality, and

a two-stage approach based on this screening technique to select the final model

and to depict the effect of significant predictors.

The main focus of the paper is the feature screening technique. Notice that

the varying coefficient models are indeed linear models conditioning on the de-

pending covariate (denoted by u afterwards), where SIS can be applied by ranking

the magnitude of pearson correlations. This motivates us to define the conditional

correlation for varying coefficient models parallel to the pearson correlation for lin-

ear models, except that the expectations and variances are now substituted by the

conditional expectations and conditional variances. Subsequently by averaging out

the effect of u, an unconditioned-squared correlation between each predictor and

the response is obtained, whose ranks can represent the importance of the predic-

tor. The whole screening procedure is referred to as the conditioning-correlation

independence screening (CCIS).

Several desirable theoretical properties of CCIS are systematically studied. We

show that CCIS possesses the ranking consistency property (Zhu, Li, Li, and Zhu,

2011), which means with probability tending to 1, the important predictors rank

before the unimportant ones. In addition, CCIS satisfies the sure screening prop-

erty (Fan and Lv, 2008) for varying coefficient models, which guarantees the prob-

ability that the model chosen by CCIS includes the true model tends to 1 as the

sample size goes to infinity. Monte Carlo simulation studies are conducted to

empirically verify these theoretical advantages.
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3.2 Methodology

Suppose {(ui,xi, yi), i = 1, . . . , n} is a random sample from the varying coefficient

model:

y = β0(u) + xTβ(u) + ε. (3.1)

In the model (3.1), y is the response and x = (x1, . . . , xp)
T is the p-dimensional

predictor. β(u) = {β1(u), . . . , βp(u)}T ∈ Rp is the coefficient vector, where βj(u)’s

are unknown smooth functions of the depending variable u ∈ R1. The random

noise ε ∈ R1 satisfies E(ε|x, u) = 0 almost surely.

3.2.1 Conditional Correlations and Their Estimations

To define the conditional correlation between each predictor and the response, first

consider the conditional covariance between two generic variables z and w given u:

cov(z, w|u) = E(zw|u)− E(z|u)E(w|u).

Then the conditional correlation between xj, j = 1, . . . , p, and y given u is defined

as

ρ(xj, y|u) =
cov(xj, y|u)√

cov(xj, xj|u)cov(y, y|u)
. (3.2)

Elementary calculation shows that ρ(xj, y|u) is essentially a function of five con-

ditional means E(y|u), E(y2|u), E(xj|u), E(x2j |u) and E(xjy|u), which can be

estimated through nonparametric smoothing techniques. In this paper, the local

constant estimation (Fan and Gijbels, 1996) is applied due to its parsimony and de-

sirable properties. The conditional mean of a random scalar z given u is estimated

based on the sample {(ui, zi), i = 1, . . . , n} by the weighted average

Ê(z|u) =
n∑
i=1

ωi(u)zi. (3.3)
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The u-dependent weight ωi(u) is the normalized kernel function

ωi(u) =
Kh(ui − u)∑n
i=1Kh(ui − u)

, (3.4)

where Kh(t) = h−1K(t/h), K(t) is a kernel function, and h is the tuning bandwidth

selected to minimize the mean integrated squared error of the estimator.

In our setting, the five conditional mean estimations are accomplished by as-

signing z to be y, y2, xj, x
2
j and xiy. Then the conditional covariance and condi-

tional correlation are naturally estimated by

ĉov(xj, y|u) = Ê(xjy|u)− Ê(xj|u)Ê(y|u)

ρ̂(xj, y|u) =
ĉov(xj, y|u)√

ĉov(xj, xj|u)ĉov(y, y|u)
. (3.5)

In practice, various nonparametric smoothing methods can be used to estimate

the aforementioned five conditional means. However, since the conditional variance

and covariance are estimated through conditional means, the mean estimators are

required to guarantee the following elementary inequalities:

ĉov(z, w|u) ≤ ĉov(z, z|u) · ĉov(w,w|u) and ĉov(z, z|u) ≥ 0. (3.6)

Furthermore, the bandwidths of the smoothing techniques for estimating all

the five conditional means need to be the same to ensure (3.6).

3.2.2 Conditioning-Correlation Independence Screening

In this section, we study the methodology and implementation of CCIS for the

ultrahigh dimensional varying coefficient models. In the ultrahigh dimensional

context, the dimension p of the predictor x is allowed to increase at an exponential

rate of the sample size n, while the number of xj’s that are truly important to y

is assumed to be small relative to n.

The substantive idea brought by SIS (Fan and Lv, 2008) is using the pearson

correlation between each predictor xj and y as the marginal utility to filter out the

predictors with weak signals under the linear model setting. Since the varying co-

efficient model (3.1) becomes a linear model after conditioned on u, we are inspired
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to develop a feature screening criterion analogous to the pearson correlation, based

on the conditioning-correlation learning.

Notice that ρ(xj, y|u) in (3.2) depends on the value of u. For each predictor

xj, we can obtain all the n sample conditional correlations ρ(xj, y|ui), i = 1, . . . , n,

by taking u to be ui, i = 1, . . . , n. However, a unified score of each xj is needed

to represent the importance of xj. To average out the effect of u, we define the

unconditioned-squared correlation ρ∗j between xj and y and its estimate ρ̂∗j as

ρ∗j =
1

n

n∑
i=1

ρ2(xj, y|ui), and ρ̂∗j =
1

n

n∑
i=1

ρ̂2(xj, y|ui). (3.7)

We take the square of each sample conditional correlation to avoid the counter-

action between positive and negative correlation effects. The CCIS procedure

requires to sort ρ̂∗j , j = 1, . . . , p in a decreasing order, and yields the screened

submodel

M̂ = {j : 1 ≤ j ≤ p, ρ̂∗j ranks among the first d},

where the submodel size d is taken to be smaller than the sample size n. Thus

the ultrahigh dimensionality p is reduced to the moderate scale d. To determine

d, the hard threshold d = [n/ log(n)] is often used in literature, where [a] refers

to the integer part of a. For CCIS, however, we modify the threshold as d =

[n4/5/ log(n4/5)] because the effective sample size becomes nh instead of n due to

the nonparametric estimation procedure, and the optimal bandwidth h has the

rate O(n−1/5). In practice, one can always get a more conservative submodel with

size d = k[n4/5/ log(n4/5)], k = 2, 3, . . ., to enlarge the probability of including the

truly important predictors.

3.3 Theoretical Properties

In this section, we study the theoretical properties of CCIS. To begin with, some

notations and regularity conditions are introduced.
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3.3.1 Notations and Regularity Conditions

For the univariate depending variable u, suppose U = [a, b] is its bounded sup-

port, where a and b are finite constants. Define the true model index set and its

complement to be

M∗ = {1 ≤ j ≤ p : βj(u) 6= 0 for some u ∈ U},

Mc
∗ = {1 ≤ j ≤ p : βj(u) ≡ 0 for any u ∈ U}.

Denote ρ∗j0 = Euρ
2(xj, y|u) to be the population version of the unconditioned-

squared correlation, then by definition, ρ∗j0 = Euρ
∗
j . The following regularity con-

ditions are imposed.

(C1) The density function f(u) of u satisfies supu∈U f(u) ≤ M1, supu∈U |f ′(u)| ≤
M2 and supu∈U|f ′′(u)| ≤M3 for some finite constants M1, M2 and M3, where

f ′(u) and f ′′(u) are the first and second order derivatives of f(u).

(C2) The kernel function K(·) is bounded uniformly: supu∈U |K(u)| ≤ M4 < ∞.

And µ1(K) =
∫
tK(t)dt <∞, µ2(K) =

∫
t2K(t)dt <∞.

(C3) The random variables xj and y satisfy the sub-exponential tail probability

uniformly in p, i.e. there exists s0 > 0, such that for 0 < s < s0,

sup
u∈U

max
1≤j≤p

E{exp(2sx2j |u)} <∞, sup
u∈U

E{exp(2sy2|u)} <∞,

sup
u∈U

max
1≤j≤p

E{exp(2sxjy|u)} <∞.

(C4) The five conditional means E(y|u), E(y2|u), E(xj|u), E(x2j |u) and E(xjy|u)

have finite first and second order derivatives uniformly in u ∈ U, and the

conditional variances of xj and y are uniformly positive in u ∈ U, i.e.

inf
u∈U

min
1≤j≤p

var(xj|u) > 0, inf
u∈U

var(y|u) > 0.

Condition (C1) and (C2) put mild constraints on the density function f(u) of u

and the kernel function K(·), which can be guaranteed by most commonly used
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distributions and kernels. Moreover, (C2) implies that K(·) has every finite mo-

ment, i.e. E(|K(u)|r) <∞, ∀r > 0. Condition (C3) is relatively strong and only

used to facilitate the technical proofs. Furthermore, if condition (C3) holds, the

moment generating functions of xi’s and y are also finite, resulting in the existence

of finite moments in any order, especially,

sup
u∈U

max
1≤j≤p

E(xj|u) <∞, sup
u∈U

E(y|u) <∞, sup
u∈U

max
1≤j≤p

E(xjy|u) <∞,

sup
u∈U

max
1≤j≤p

E(x2j |u) <∞, sup
u∈U

E(y2|u) <∞. (3.8)

Condition (C4) puts more constraints on the five conditional means in addition to

(3.8), and the nonnegative variances guarantees that the conditional correlation is

well defined.

3.3.2 Ranking Consistency Property

In this section we study the ranking consistency property (Zhu, Li, Li and Zhu,

2011) of CCIS, which ensures that with an overwhelming probability, all the truly

important predictors rank above the unimportant ones. Another condition is re-

quired to ensure this property.

(C5)

lim inf
n→∞

{min
j∈M∗

ρ∗j0 − max
j∈Mc

∗
ρ∗j0} > 0.

Condition (C5) provides a clear separation between the important and unimportant

predictors in terms of the population level unconditioned-squared correlation ρ∗j0.

This condition rules out the situation when certain unimportant predictors have

large ρ∗j0’s and rank high just because they are highly correlated with the true

ones, while some important predictors with weaker signals are left unselected.

Theorem 5. (Ranking Consistency Property) Under conditions (C1)-(C5), for

p = o{exp(an)} with some a > 0, we have

lim inf
n→∞

{min
j∈M∗

ρ̂∗j − max
j∈Mc

∗
ρ̂∗j} > 0 in probability.
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Theorem 1 states that the truly important predictors should have larger ρ̂∗’s

than the unimportant ones, leading to the model selection consistency of CCIS for

ultrahigh dimensional varying coefficient models.

3.3.3 Sure Screening Property

Next we develop the sure screening property (Fan and Lv, 2008) of CCIS, which

guarantees that the true model has an overwhelming probability to be included

in the chosen model. This property relies further on the following condition in

addition to (C1) – (C4):

(C6) There exist some c3 > 0 and 0 ≤ κ < 1/5, such that

min
j∈M∗

ρ∗j0 ≥ 2c3n
−κ.

Condition (C6) requires the true unconditioned-squared correlations between the

important xj’s and y to be bounded away from 0. However, the lower bound

depends on n, thus ρ∗j0’s are allowed to go to 0 in the asymptotic sense. This

condition rules out the situation where the predictors are marginally uncorrelated

with y but jointly correlated.

Theorem 6. (Sure Screening Property) Under condition (C1)-(C4), we have

P

(
max
1≤j≤p

|ρ̂∗j − ρ∗j0| > c3 · n−κ
)
≤ O{np exp(−n

1
5
−κ/ξ)},

and under one more condition (C6),

P (M∗ ⊂ M̂) ≥ 1−O{nsn exp(−n
1
5
−κ/ξ)},

where ξ is some positive constant determined by c3, and sn is the cardinality of

M∗, which is sparse and may vary with n.

The proofs of Theorem 5 and Theorem 6 are studied in next chapter.
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3.4 Monte Carlo Simulations

To evaluate the performance of CCIS, we conduct several Monte Carlo simulations.

For each example below, the univariate index variable ui and the covariate xi are

generated i.i.d in the following fashion:

(u∗i ,xi) ∼MVN(0,Σ), where Σjk = ρ|j−k|, j, k = 1, . . . , p+ 1,

ui = Φ(u∗i ), i = 1, . . . , n,

where Φ(·) is the cumulative distribution function for the standard Normal dis-

tribution. Then ui ∼ U(0, 1) and is correlated with the covariate xi. And the

random noise εi ∼ N(0, 1) independently. We set p = 1000, n = 200, and repeat

the experiment 100 times. In each of the 100 simulations, we choose d to be d0, 2d0

and 3d0, where d0 = [n4/5/ log(n4/5)] according to the hard threshold introduced

in section 2.2, hence we reduce the dimensionality from p = 1000 to d. For each

example, two models are considered with ρ = 0.8 and ρ = 0.4, respectively.

The following criteria are used to assess the performance of the screening pro-

cedures:

• pj: The proportion of the jth predictor being selected into the model with

size d.

• pa: The proportion that all active predictors are selected into the model.

• rankj: The ranking of ρ̂∗j in a decreasing order.

• M : the minimum size of the model which contains all the true predictors. We

report the 5%, 25%, 50%, 75% and 95% quantiles of M from 100 simulations.

The above criteria can be used to empirically verify two theoretical properties

of a screening procedure. Fan and Lv (2008) proposed the sure screening property,

which states that the probability for the screened submodelMγ to contain the true

modelM∗ tends to one when the sample size goes to infinity, that is, pj and pa are

close to one when the submodel size d is sufficiently large. Moreover, the ranking

consistency refers to the property that the screening scores of true predictors rank

among the top, hence a reasonable screening procedure is expected to guarantee
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that rankj for the true predictors and the minimum model size M are small. The

following two examples are designed to assess the performance of CCIS and to

compare it with SIS.

Example 1. This example is a linear regression model where SIS is expected to

work well. The nonzero components of the coefficient β(u) is generated as follows:

β2(u) = 1, β100(u) = 0.8, β400(u) = 1.2, β600(u) = −0.8, β1000(u) = −1.2.

Table 3.1 depicts the individual selecting rates pj, j = 2, 100, 400, 600, 1000, and

the overall selecting rate pa given different d’s for both SIS and CCIS, by which the

sure screening property is verified. And ranking consistency is illustrated in Table

3.2 and Table 3.3, where the rankings of ρ̂∗j ’s for the truly active predictors and the

summary of minimum model sizes M are reported. From the three tables one can

see that the performances of SIS and CCIS are similar for this example, indicating

that our method works well in linear model setting. Yet if the underlying model

is known to be linear, SIS is preferred due to its computational efficiency.

Table 3.1. The proportions pj and pa for Example 1.
SIS CCIS

d p2 p100 p400 p600 p1000 pa p2 p100 p400 p600 p1000 pa
ρ = 0.4

d0 0.99 0.94 1.00 1.00 1.00 0.94 0.99 0.93 1.00 0.97 1.00 0.93
2d0 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.96 1.00 0.99 1.00 0.96
3d0 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.00 1.00 1.00 0.97

ρ = 0.8
d0 0.95 0.82 1.00 0.85 1.00 0.82 0.87 0.87 1.00 0.88 1.00 0.87
2d0 0.99 0.95 1.00 0.97 1.00 0.95 0.99 0.96 1.00 0.97 1.00 0.96
3d0 0.99 0.98 1.00 0.99 1.00 0.98 0.99 0.98 1.00 0.99 1.00 0.98

Table 3.2. rankj of each true predictor xj for Example 1.

SIS CCIS
ρ x2 x100 x400 x600 x1000 x2 x100 x400 x600 x1000
0.4 3.27 5.75 1.76 4.73 1.77 4.02 8.32 1.75 5.21 1.80
0.8 5.44 15.48 2.13 11.55 2.00 9.66 13.87 1.82 10.80 1.74
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Table 3.3. The minimum model size M for Example 1.
SIS CCIS

ρ 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
0.4 5.00 5.00 5.00 6.25 17.05 5.0 5.0 5.0 8.0 38.1
0.8 7.00 11.00 14.00 18.25 41.25 7.00 11.00 15.00 19.25 50.00

In addition, comparing the two models with different ρ’s for both screening

methods, the ones with ρ = 0.4 perform slightly better than those with ρ =

0.8, which is because when the predictors are highly correlated, say ρ = 0.8, the

screening score ρ̂∗’s of some insignificant variables are inflated by their adjacent

significant variables, hence these unimportant predictors may be selected due to

their strong correlation with the active predictors. This issue can be fixed by the

iterative algorithm discussed in section 5.

Example 2. In this example we consider a varying coefficient model where the

coefficients are smooth functions of the index variable u, which are defined by

β2(u) = 2I(u > 0.4), β100(u) = 1 + u, β400(u) = (2− 3u)2

β600(u) = 2 sin(2πu), β1000(u) = exp{u/(u+ 1)}, other β(u)’s are 0.

The results are shown in Table 3.4, Table 3.5, and Table 3.6. From the outputs,

the SIS does not perform well for this model. The individual selecting rates pj

and the rankings of ρ̂∗j show that it fails to detect β600(u). The reason is that

β600(u) = 2 sin(2πu) has mean 0 when u ∼ U(0, 1), making the sample Pearson

correlation between x600 and response y close to 0, although x600 is functionally

important when modeling y. CCIS works well for this model, where the individual

selection rate pj for each significant variable and the overall selecting rate pa are

close to one. Moreover, the ρ̂∗’s corresponding to the true predictors indeed rank

on the top, consequently the minimum model size M is small. Therefore, the sure

screening property and ranking consistency of the proposed method are verified

through the three tables. Again, both methods work better for the models with

ρ = 0.4 than with ρ = 0.8 for the same reason as Example 1.
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Table 3.4. The proportions pj and pa for Example 2.
SIS CCIS

d p2 p100 p400 p600 p1000 pa p2 p100 p400 p600 p1000 pa
ρ = 0.4

d0 0.99 1.00 0.92 0.02 1.00 0.02 1.00 1.00 1.00 1.00 0.99 0.99
2d0 0.99 1.00 0.98 0.05 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00
3d0 1.00 1.00 0.98 0.07 1.00 0.07 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.8
d0 0.89 1.00 0.86 0.00 1.00 0.00 0.95 1.00 0.97 0.98 0.98 0.95
2d0 0.99 1.00 0.94 0.01 1.00 0.01 1.00 1.00 1.00 1.00 1.00 1.00
3d0 0.99 1.00 0.98 0.01 1.00 0.01 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.5. rankj of each true predictor xj for Example 2.

SIS CCIS
ρ x2 x100 x400 x600 x1000 x2 x100 x400 x600 x1000
0.4 3.75 1.46 7.28 436.60 2.37 2.68 2.03 3.48 3.81 3.54
0.8 8.55 1.63 10.89 499.53 3.26 6.21 1.94 6.17 6.20 4.16

Table 3.6. The minimum model size M for Example 2.
SIS CCIS

ρ 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
0.4 38.80 197.00 416.50 685.75 874.25 5.0 5.0 5.0 5.0 7.0
0.8 89.30 204.75 495.00 769.50 952.60 5.0 7.0 10.0 13.0 21.1

Example 3. In the previous example, the significant variables can be viewed as

independent with spatial-power correlation structure. In this example, however,

we set x1, x2, . . . , x5 to be important predictors, which are highly correlated, and

the associated coefficient functions are constructed in the same fashion as Example

2:

β1(u) = 2I(u > 0.4), β2(u) = 1 + u, β3(u) = (2− 3u)2

β4(u) = 2 sin(2πu), β5(u) = exp{u/(u+ 1)}, other β(u)’s are 0.

From the outputs given by Table 3.7, Table 3.8, and Table 3.9, both SIS and CCIS

work well for this model. The reason is that since the significant variables are
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highly correlated, the values of their marginal utilities are inflated by the adjacent

predictors. In other words, the important predictors become “more significant”

because they are also correlated with other important variables, thus although

their own signals might be weak, they can still be detected due to the strong

signal of their neighbors. We also notice that when ρ = 0.8, both methods work

better than when ρ = 0.4, resulting from the fact that stronger correlation between

predictors will reinforce the marginal utility more.

Table 3.7. The proportions pj and pa for Example 3.
SIS CCIS

d p1 p2 p3 p4 p5 pa p1 p2 p3 p4 p5 pa
ρ = 0.4

d0 1.00 1.00 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00
2d0 1.00 1.00 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
3d0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.8
d0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2d0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3d0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.8. rankj of each true predictor xj for Example 3.

SIS CCIS
ρ x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
0.4 2.71 1.08 2.41 6.39 3.93 2.45 1.11 2.63 4.25 4.56
0.8 3.02 1.13 2.03 3.94 4.88 3.48 1.11 2.01 3.80 4.60

Table 3.9. The minimum model size M for Example 3.
SIS CCIS

ρ 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
0.4 5.0 5.0 5.0 5.0 16.1 5.0 5.0 5.0 5.0 5.0
0.8 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
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3.5 Iterative Feature Screening for Varying Co-

efficient Models

As is known, ordinary feature screening procedures may fail to detect some active

covariates due to the association among the potential predictors, illustrated by

the following example. To fix this issue we propose an iterative screening method

called the iterative conditioning-correlation independence screening (ICCIS). The

procedure for choosing d predictors comprises the following steps:

1. Apply CCIS to each column of X, where X is the n×p matrix containing all

the candidate covariates. Select d1 predictors with the highest d1 ρ̂
∗ values,

denoted by X1 = {x11 , . . . , x1d1}, where d1 ≤ d.

2. Denote Xs = (x11 , . . . , x1d1 ) to be the n × d1 matrix of selected predictors,

and Xr to be the complement of Xs with dimension n × (p − d1). Then

compute the projection of Xr onto the orthogonal complement space of Xs,

Xproj = (In −Xs(X
T
s Xs)

−1XT
s )Xr.

3. Apply CCIS to each column of Xproj, and select another d2 predictors X2 =

{x21 , . . . , x2d2} in the same fashion as step 1, where d1 + d2 ≤ d.

4. Repeat 2. and 3. until the kth step where d1 + d2 + . . . + dk ≥ d. And the

selected predictors are X1

⋃
X2

⋃
. . .
⋃
Xk.

In the algorithm, d1, . . . , dk are chosen by users according to the model com-

plexity. Two steps are often sufficient in practice to achieve satisfactory result. If

d1 = d, the procedure becomes CCIS. To illustrate how ICCS outperforms CCIS

in some cases, we consider the example below.

Example 4. This example demonstrates one possible issue of CCIS that when

some covariates are jointly active in the presence of other covariates but marginally

unassociated with the response, the CCIS may fail to detect them. We generate

(xi, ui) as in section 3, and set ρ = 0.4. The coefficient functions have the following

forms:

β1(u) = 2 + cos

{
π(6u− 5)

3

}
, β2(u) = 3− 3u, β3(u) = −2 +

(2− 3u)3

4
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β4(u) = sin(
9u2

2
) + 1, β5(u) = exp{3u2/(3u2 + 1)}, β6(u) = . . . = β1000(u) ≡ 0

In this model setting, the conditional correlation between x3 and y is small

for u ∼ U(0, 1), but x3 is still jointly correlated with y. Table 3.10 and Table

3.11 compare the performances of CCIS and ICCIS for this model setting in terms

of sure screening property and ranking consistency. The rankings of ρ̂∗’s are not

reported because in each iteration, the ρ̂∗’s of the remaining predictors will change

after the previously chosen predictors are removed. From the tables one can see

that the ICCIS procedure is able to select x3 which only jointly contributes to

modeling y and is easily overlooked by CCIS.

Table 3.10. The proportions pj and pa for Example 4.
CCIS ICCIS

d p1 p2 p3 p4 p5 pa p1 p2 p3 p4 p5 pa
d0 1.00 1.00 0.36 1.00 1.00 0.36 1.00 1.00 1.00 0.99 1.00 0.99
2d0 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 1.00 1.00 1.00 1.00
3d0 1.00 1.00 0.59 1.00 1.00 0.59 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.11. The minimum model size M for Example 4.

5% 25% 50% 75% 95%
CCIS 6.0 12.0 37.5 193.0 609.0
ICCIS 5.95 11.00 11.00 11.00 11.00

3.6 Two-Stage Approach and the Application to

Framingham Heart Study

In this section, we analyze a GWAS data set from Framingham Heart Study (FHS).

FHS is a cardiovascular study beginning in 1948 under the direction of the Na-

tional Heart, Lung and Blood Institute (NHLBI), by recruiting originally 5,209

men and women between the ages of 30 and 62 from the town of Framingham,

Massachusetts. Recently, 550, 000 SNPs from 24 chromosomes have been geno-

typed from the cohort study (Jaquish 2007) with 418 males and 559 females. The
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SNPs with rare allele frequency < 10% were removed from the analysis, leaving

349, 985 non-rare SNPs of interest. In addition, the body mass indexes (BMI)

and the ages of the subjects are measured. The goal of our analysis is to detect

significant non-rare SNPs that are associated with BMI.

3.6.1 Statistical Model

In this chapter, we only focus on the baseline measurements of Age and BMI.

One may argue that the effect of SNPs on BMI might change with age, hence

the following varying coefficient model is appropriate, with baseline Age being the

univariate index variable u and baseline BMI being the response y:

y = β0(u) + xTaβa(u) + xTdβd(u) + ε, (3.9)

where ε is the random noise that is assumed to follow N(0, σ2); The smooth func-

tions βa(u) = (βa1(u), . . . , βap(u))T and βd(u) = (βd1(u), . . . , βdp(u))T are the ad-

ditive and dominant effects of the non-rare SNPs with p = 349, 985; xa and xd are

the indicator vectors of the additive and dominant effects of SNPs. More explicitly,

consider a SNP A with two alleles A and a, generating three genotypes AA, Aa

and aa, then the jth element of xa and xd are defined as

xaj =


2, if the genotype of SNP j is AA

1, if the genotype of SNP j is Aa

0, if the genotype of SNP j is aa,

xdj =

{
1, if the genotype of SNP j is Aa

0, if the genotype of SNP j is AA or aa.

The model (3.9) can then be unified in the following form:

y = xTβ(u) + ε, (3.10)

where x = (xT
a ,x

T
d )T, and β(u) = (βa(u)T,βd(u)T)T. Since we consider both addi-

tive and dominant effects the total dimension becomes 2p = 699, 970 >> n = 977,
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resulting in ultrahigh dimensionality. To deal with these types of problems, we

use the aforementioned two-stage approach: In the first stage, a feature screening

method is applied to reduce dimensionality, and in the second stage, some regu-

larization method is implemented to select important variables and estimate the

coefficients. Various techniques are used to reduce dimensionality of SNPs in the

first stage, such as the single SNP analysis, the preconditioning technique, etc.

Yet these dimension reduction techniques fail to consider the varying coefficient

model structure. In addition,not much has been done in literature about the vari-

able selection for varying coefficient models in the second stage. To address these

issues, we first use CCIS to reduce dimensionality, by which the varying coefficient

structure is taken into account; And in the second stage, we apply several penal-

ized regression procedures to choose significant variables as well as to estimate the

coefficient functions.

3.6.2 Two-Stage Approach

Stage 1: feature screening procedure

Recall the varying coefficient model (3.10). The predictor x with dimension 2p =

699, 970 consists of both additive and dominant effects of the non-rare SNPs. In

this stage, we compute the screening statistic ρ̂∗j , j = 1, . . . , 2p for each SNP, and

sort ρ̂∗j ’s in a decreasing order. Then we obtain a submodel with size d:

Mγ = {j : 1 ≤ j ≤ 2p, ρ̂∗j is among the first d largest of all ρ̂∗’s}.

where d = [n4/5/ log(n4/5)] = 45 according to the hard threshold. By CCIS, the

ultrahigh dimension 2p is reduced to the moderate dimension d.

Stage 2: Post-screening variable selection

In this stage, we conduct the penalized regression procedures to select important

variables. Wang and Xia (2009) advocated Kernel LASSO technique (KLASSO)

as the regularization method for varying coefficient models, incorporating local

polynomial smoothing (Fan and Gijbels, 1996) and LASSO regression (Tibshirani,

1996). We extend this idea to SCAD penalty, and apply LASSO, adaptive LASSO
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and SCAD penalized regression to the screened data with dimension d = 45.

Consider the submodel in the second stage,

y = xTβ(u) + ε,

where β(u) is now the d-dimensional coefficient function to be estimated. However,

since we cannot directly estimate the whole coefficient function with an explicit

form, we focus on estimating β(u) when u = u1, . . . , un, i.e. the matrix

B = {β(u1), . . . ,β(un)}T = (b1, . . . ,bd) ,

where bj ∈ Rn×1 is the jth column of B.

To obtain the estimate B̂λ of B, we need to minimize the penalized loss function

Qλ(B) =
n∑
t=1

n∑
i=1

{yi − xT
i β(ut)}2Kh(ut − ui) + n

d∑
j=1

pλ(‖bj‖) (3.11)

where pλ(·) is the penalty function, ‖ · ‖ is the Euclidean norm, and Kh(u) =

h−1K(u/h) with K(·) being any kernel function. For the sake of simplicity, we

take Epanechikov kernel K(t) = 0.75(1− t2)I(|t| ≤ 1).

An iterative algorithm based on the local quadratic approximation (LQA) to

the penalty function (Fan and Li, 2001) is applied to get the minimizer B̂λ of

Qλ(B). Set the initial value B̂
(0)
λ to be the unpenalized estimator (Fan and Zhang,

2000b)

B̂
(0)
λ = B̃ = argminB∈Rn×d

{
n∑
t=1

n∑
i=1

(yi − xT
i β(ut))

2Kh(ut − ui)

}
,

then the (m+ 1)th-step value of B̂λ is

B̂
(m+1)
λ = {β̂(m+1)

λ (u1), . . . , β̂
(m+1)
λ (un)}T
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with the tth row
(
β̂

(m+1)
λ (ut)

)T
, where

β̂
(m+1)
λ (ut) =

(
1

n

n∑
i=1

xix
T
i Kh(ut − ui) +D(m)

)−1(
1

n

n∑
i=1

xiyiKh(ut − ui)

)
,(3.12)

D(m) is a d× d diagonal matrix with the jth diagonal component given by

D
(m)
jj =

p′λ(‖b̂
(m)
λ,j ‖)

2‖b̂(m)
λ,j ‖

,

and b̂
(m)
λ,j is the jth column of the mth-step value B̂

(m)
λ . Therefore, the difference

among LASSO, Adaptive LASSO and SCAD estimates lies only in D(m).

1. LASSO for varying coefficient model:

The LASSO penalty pλ(‖bj‖) = λ‖bj‖ can be locally approximated by a

quadratic form based on LQA in the mth step (Fan and Li, 2001; Hunter

and Li, 2005), i.e.

pλ(‖bj‖) ≈
λ‖bj‖2

‖b̂(m)
λ,j ‖

,

where λ =
√
nλ0 and λ0 is the tuning parameter. Hence the (m+ 1)th-step

value of β̂λ(ut) is computed by (3.12) with D
(m)
jj = λ/‖b̂(m)

λ,j ‖.

2. Adaptive LASSO for varying coefficient model:

Adaptive LASSO can be applied to reduce the bias of LASSO estimates, by

using different tuning parameters for different predictors. More explicitly,

the penalty

pλ(‖bj‖) ≈ λj‖bj‖2/‖b̂(m)
λ,j ‖

where λj =
√
nλ0/‖b̃j‖ with b̃j being the jth column of the unpenalized

estimate B̃, and λ0 is the tuning parameter. Similar with LASSO, the jth

diagonal component of D(m) for Adaptive LASSO is λj/‖b̂(m)
λ,j ‖.

3. SCAD for varying coefficient model:
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The SCAD penalty is defined by

pλ(‖bj‖) = λ‖bj‖I(0 ≤ ‖bj‖ < λ) +
aλ‖bj‖ − (‖bj‖2 + λ2)/2

a− 1
I(λ ≤ ‖bj‖ < aλ)

+
(a+ 1)λ2

2
I(‖bj‖ > aλ),

with the first order derivative

p′λ(‖bj‖) = λI(‖bj‖ ≤ λ) +
(aλ− ‖bj‖)+I(‖bj‖ > λ)

a− 1
,

where a = 3.7 as suggested by Fan and Li (2001), λ =
√
nλ0, and λ0 is the

tuning parameter. Thus the jth diagonal component of D(m) is

D
(m)
jj =

1

2‖b̂(m)
j ‖

{
λI(‖b̂(m)

j ‖ ≤ λ) +
(aλ− ‖b̂(m)

j ‖)+ · I(‖b̂(m)
j ‖ > λ)

a− 1

}
,

and the estimates are obtained by iteratively computing (3.12).

To implement each of the three penalized regression techniques, we need to choose

tuning parameter λ. Here we use three criteria, AIC, BIC, and GCV defined as

follows (Craven and Wahba, 1979, Fan and Li, 2001, Li et al., 2006, and Wang et

al., 2007b):

AIC = log(RSSλ) +
2dfλ
n

,

BIC = log(RSSλ) + dfλ ·
log(n)

n
,

GCV =
RSSλ

(1− dfλ
n

)2
,

where dfλ is the degree of freedom for nonparametric models defined by (Fan,

Zhang, and Zhang, 1999)

dfλ = γK |U|dλ{K(0)− 0.5

∫
K2(u)du}/h, (3.13)

|U| is the range of the index variable support U, dλ is the number of nonzero

coefficient functions in the model, and γK is a constant which is determined by the



www.manaraa.com

74

kernel function K(·). For Epanechnikov kernel, γK = 2.1153, and RSSλ is defined

by

RSSλ =
1

n

n∑
i=1

{yi − xT
i β̂λ(ui)}2,

where β̂λ(u) is the coefficient estimate for a given λ, using any of the three penalized

regression technique.

Figure 3.1 illustrates how the values of the three criteria change with the tuning

parameter λ, and in each plot, the optimal λ is chosen to minimize the correspond-

ing criterion value. AIC and GCV perform quite similar for each penalized regres-

sion model and choose the same tuning parameter, which tends to be smaller than

that selected by BIC, hence AIC and GCV tend to generate more conservative

models than BIC. More specifically, the sizes of the nine models chosen based on

different penalties and different tuning parameter selection criteria are reported in

Table 3.12, where the same size indicates identical model. Therefore, one can see

that SCAD penalized regressions give the sparsest model of size 34, while LASSO-

AIC and LASSO-GCV produce the most conservative model with 43 predictors.

Table 3.12. The sizes of the nine models

CCIS+LASSO CCIS+AdaptiveLASSO CCIS+SCAD
AIC 43 40 34
BIC 42 38 34
GCV 43 40 34

Table 3.13 compares the performances of the above models in terms of median

squared prediction error (MSPE). The median of MSPE’s based on 100 simulations

are reported. The SCAD penalized regressions give the smallest MSPE.

Table 3.13. Median of MPSE

CCIS+LASSO CCIS+AdaptiveLASSO CCIS+SCAD
AIC 0.405 0.401 0.380
BIC 0.395 0.400 0.380
GCV 0.405 0.401 0.380
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Figure 3.1. Tuning parameter selection for with three penalties and three criteria
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3.6.3 Generalized Likelihood Ratio Tests

In Table 3.12, the same model size indicates the identical model, thus the nine

methods produce 5 different models: lasso-AIC, lasso-BIC, Adeptive LASSO-AIC

(Alasso-AIC, for short), Adaptive LASSO-BIC (Alasso-BIC), and SCAD. In addi-

tion, we can also obtain the unpenalized regression model (UP) with size 45. The

6 models are nested, which motivates us to conduct pairwise generalized likelihood

ratio tests (Fan and Zhang, 2001) to compare their performances. Let RSS1 be

the residual sum of squares of full model with estimated coefficient vector β̂F (u),
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and RSS0 be that of reduced model with β̂R(u), i.e.

RSS1 =
n∑
i=1

(yi − xT
i β̂F (ui))

2, RSS0 =
n∑
i=1

(yi − xT
i β̂R(ui))

2.

Then the test statistic is constructed as

Ω ≈ n

2
· RSS0 −RSS1

RSS1

.

Fan and Zhang (2001) showed that under the null hypothesis, approximately we

have

γKΩ ∼ χ2
δ (3.14)

where the degree of freedom δ has the same form as dfλ in (3.13), but with dλ

replaced by p1 − p0, where p1 is the full model size and p0 is the reduced model

size.

Based on (3.14), the p-values of all the pairwise tests are computed and reported

in Table 3.14. Note that we did not contain the unpenalized model in the reduced

model part, and did not contain SCAD model in the full model part, since they

are the largest and smallest model. Each p-value is large enough that we cannot

reject the corresponding reduced model. Consequently, the sparsest model chosen

by SCAD is sufficient for modeling BMI.

Table 3.14. The p-values of the pairwise generalized likelihood ratio tests

H1

Unpenalized lasso-AIC lasso-BIC Alasso-AIC Alasso-BIC

lasso-AIC 0.9952 · · · ·
lasso-BIC 0.9999 0.9462 · · ·

H0 Alasso-AIC 0.9999 0.9998 0.9995 · ·
Alasso-BIC 0.9999 0.9967 0.9854 0.7481 ·
SCAD 0.9999 0.9991 0.9965 0.9516 0.9268
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3.6.4 The Results

In Table 3.15, the names, positions, and effects (additive or dominant) of the

significant SNPs in the SCAD model are tabulated, where “Additive” indicates

that the additive effect of the corresponding SNP is significant, and “Dominant”

indicates that the dominant effect is significant.

Figure 3.2 is the plot of the estimated coefficient functions versus the univariate

index variable Age, which depicts the age-dependent effects of the 34 chosen SNPs

in Table 3.15. From the plot, one can see that β̂k(Age)’s indeed vary with Age,

indicating the necessity of varying-coefficient structure.

Figure 3.2. The estimated coefficient functions of significant SNPs
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Table 3.15. Information of the significant SNPs

Chromosome SNP Name Position Effect

1 ss66379476 181239647 Additive
1 ss66516012 198313489 Additive
2 ss66282476 47658001 Additive
2 ss66085516 10151206 Dominant
3 ss66266272 29713029 Dominant
4 ss66346937 92071818 Additive
4 ss66137328 94451805 Additive
4 ss66159949 105978188 Additive
4 ss66353634 15504889 Dominant
4 ss66354801 115353605 Dominant
5 ss66078741 34192815 Dominant
5 ss66164865 99237174 Dominant
7 ss66524659 44465215 Additive
7 ss66155306 134464951 Additive
7 ss66261449 46646583 Dominant
8 ss66236850 32389924 Additive
8 ss66143305 122601829 Additive
8 ss66445258 14959676 Dominant
8 ss66517429 15818735 Dominant
9 ss66319388 16387155 Additive
11 ss66153510 13262887 Additive
11 ss66110771 13267430 Additive
11 ss66112931 103378701 Dominant
12 ss66470239 51255904 Additive
12 ss66323107 117659019 Additive
13 ss66041456 107914455 Dominant
14 ss66404926 24422783 Additive
15 ss66058021 44940166 Dominant
16 ss66064472 5022290 Dominant
19 ss66435333 5178008 Dominant
20 ss66272727 2700340 Additive
20 ss66176990 2723332 Dominant
21 ss66511535 15841940 Additive
22 ss66305798 16578327 Additive
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Figure 3.2. (Cont’d.) The estimated coefficient functions of significant SNPs
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Chapter 4
Proofs of Theoretical Properties of

CCIS

In this chapter, we study the technical proofs of the aforementioned two desir-

able theoretical properties ranking consistency and sure screening property of the

screening procedure CCIS for varying coefficient models.

4.1 Proof of Theorem 5

In this section, we prove the ranking consistency of CCIS stated in Theorem 5, by

studying the consistency of the estimated screening criterion. To begin with, two

lemmas are introduced.

Lemma 1. (Hoeffding’s inequality) Assume the independent random sample

{Xi, i = 1, . . . , n} satisfies P (Xi ∈ [ai, bi]) = 1 for some ai and bi, ∀i = 1, . . . , n.

Then, for any ε > 0, we have

P (|X − E(X)| ≥ ε) ≤ 2 exp

(
− 2ε2n2∑n

i=1(bi − ai)2

)
, (4.1)

where X = (X1 + · · ·+Xn)/n.

Lemma 2. Assume a(u) and b(u) are two uniformly-bounded functions of u, that
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is, there exist M5 > 0, M6 > 0 such that

sup
u∈U
|a(u)| ≤M5, sup

u∈U
|b(u)| ≤M6.

For a given u ∈ U, Â(u) and B̂(u) are estimates of a(u) and b(u) based on a

sample with size n. Suppose for an arbitrary ε > 0, there exist positive constants

c1, c2 and s, such that

P (|Â(u)− a(u)| ≥ ε) ≤ c1(1−
εs

c1
)n,

P (|B̂(u)− b(u)| ≥ ε) ≤ c2(1−
εs

c2
)n. (4.2)

Furthermore, assume b(u) is uniformly bounded away from 0, that is, there is

M7 > 0 such that infu∈U |b(u)| > M7. Then Â(u)B̂(u), Â(u) − B̂(u), Â(u)/B̂(u)

and

√
B̂(u), if well defined, all have the same form of inequality as (4.2).

Proof of Lemma 2:

For all the proof, we denote C as a generic constant depending on the context,

which can vary from line to line. First notice that Â(u) and B̂(u) are bounded in

probability. More specifically, for any ε > 0, since supu∈U |a(u)| ≤M5,

P
(
|Â(u)| ≥M5 + ε

)
≤ P

(
|Â(u)− a(u)|+ |a(u)| ≥M5 + ε

)
≤ P

(
|Â(u)− a(u)| ≥ ε

)
≤ c1(1−

εs

c1
)n

by (4.2). In the same fashion, we can prove P
(
|B̂(u)| ≥M6 + ε

)
≤ c2(1−εs/c2)n.

1. Consider Â(u)B̂(u). For a given u and any ε > 0,

P
(
|Â(u)B̂(u)− a(u)b(u)| ≥ ε

)
(4.3)

= P
(
|Â(u)B̂(u)− Â(u)b(u) + Â(u)b(u)− a(u)b(u)| ≥ ε

)
≤ P

(
|Â(u)| · |B̂(u)− b(u)|+ |b(u)| · |Â(u)− a(u)| ≥ ε

)
≤ P

(
|Â(u)| · |B̂(u)− b(u)| ≥ ε

2

)
+ P

(
|b(u)| · |Â(u)− a(u)| ≥ ε

2

)
,
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where the first term

P
(
|Â(u)| · |B̂(u)− b(u)| ≥ ε

2

)
= P

(
|Â(u)| · |B̂(u)− b(u)| ≥ ε

2
, |Â(u)| ≥M5 + ε

)
+P

(
|Â(u)| · |B̂(u)− b(u)| ≥ ε

2
, |Â(u)| < M5 + ε

)
≤ P

(
|Â(u)| ≥M5 + ε

)
+ P

(
(M5 + ε) · |B̂(u)− b(u)| ≥ ε

2

)
≤ c1(1−

εs

c1
)n + P

(
|B̂(u)− b(u)| ≥ ε

2(M5 + ε)

)
≤ c1(1−

εs

c1
)n + c2(1−

εs

2c2(M5 + ε)
)n

≤ c3(1−
εs

c3
)n, where c3 = max{c1 + c2, 2c2(M5 + ε)}

and the second term

P
(
|b(u)| · |Â(u)− a(u)| ≥ ε

2

)
≤ P

(
|Â(u)− a(u)| ≥ ε

2M6

)
≤ c2(1−

εs

2c2M6

)n.

Therefore, (4.3) becomes

P
(
|Â(u)B̂(u)− a(u)b(u)| ≥ ε

)
≤ c3(1−

εs

c3
)n + c2(1−

εs

2c2M6

)n (4.4)

≤ C(1− εs

C
)n, where C = max{c3 + c2, 2c2M6}.

In addition, by setting B̂(u) ≡ Â(u) and b(u) ≡ a(u), (4.4) indicates

P
(
|Â(u)2 − a(u)2| ≥ ε

)
≤ C(1− εs

C
)n for some C > 0.
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2. Consider Â(u)− B̂(u). For a given u and any ε > 0,

P
(
|{Â(u)− B̂(u)} − {a(u)− b(u)}| ≥ ε

)
≤ P

(
|Â(u)− a(u)|+ |B̂(u)− b(u)| ≥ ε

)
≤ P

(
|Â(u)− a(u)| ≥ ε

2

)
+ P

(
|B̂(u)− b(u)| ≥ ε

2

)
≤ c1(1−

εs

2c1
)n + c2(1−

εs

2c2
)n

≤ C(1− εs

C
)n, where C = max{2c1, 2c2, c1 + c2}.

3. Consider Â(u)/B̂(u). To guarantee it to be well defined, the denomina-

tor B̂(u) need to be bounded away from 0, i.e. there exist M8 such that

infu∈U |B̂(u)| > M8. Then for a given u and any ε > 0,

P

(∣∣∣∣∣ Â(u)

B̂(u)
− a(u)

b(u)

∣∣∣∣∣ ≥ ε

)

≤ P

(∣∣∣∣∣ Â(u)

B̂(u)
− a(u)

B̂(u)

∣∣∣∣∣+

∣∣∣∣∣ a(u)

B̂(u)
− a(u)

b(u)

∣∣∣∣∣ ≥ ε

)

≤ P

(
1

|B̂(u)|
· |Â(u)− a(u)| ≥ ε

2

)
+ P

(
|a(u)|

|B̂(u)| · |b(u)|
· |B̂(u)− b(u)| ≥ ε

2

)

≤ P

(
|Â(u)− a(u)| ≥ εM8

2

)
+ P

(
|B̂(u)− b(u)| ≥ εM7M8

2M5

)
≤ c1(1−

εsM8

2c1
)n + c2(1−

εsM7M8

2c2M5

)n

≤ C(1− εs

C
)n, where C = max{c1 + c2,

2c1
M8

,
2c2M5

M7M8

}.

4. Consider

√
B̂(u), if well defined. For any ε > 0,

P

(
|
√
B̂(u)−

√
b(u)| ≥ ε

)

= P

 |B̂(u)− b(u)|√
B̂(u) +

√
b(u)

≥ ε


≤ P

(
|B̂(u)− b(u)| ≥ ε(

√
M7 +

√
M8)

)
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≤ c2(1−
εs(
√
M7 +

√
M8)

c2
)n

≤ C(1− εs

C
)n, where C = max{c2,

c2√
M7 +

√
M8

}.

To summarize, the four estimators have the same form of convergence as Â(u) and

B̂(u).

Proof of Theorem 5:

Now we go back to the proof of ranking consistency property. We divide the proof

into the following three steps.

Step I. Prove for any ε > 0, u ∈ U and 1 ≤ j ≤ p, we have

P (|ρ̂(xj, y|u)− ρ(xj, y|u)| ≥ ε) ≤ C(1− sε

C
)n.

With elementary calculation, ρ̂(xj, y|u) can be represented by

ρ̂(xj, y|u) =
Z1Z6 − Z2Z3√

(Z1Z4 − Z2
3)(Z1Z5 − Z2

2)
,

where

Z1 =
1

n

n∑
i=1

K(
ui − u
h

), Z2 =
1

n

n∑
i=1

yiK(
ui − u
h

),

Z3 =
1

n

n∑
i=1

xijK(
ui − u
h

), Z4 =
1

n

n∑
i=1

x2ijK(
ui − u
h

), (4.5)

Z5 =
1

n

n∑
i=1

y2iK(
ui − u
h

), Z6 =
1

n

n∑
i=1

xijyiK(
ui − u
h

).

1. First prove P (|Z1 − h · f(u)| ≥ ε) ≤ 4(1− sε/4)n, where f(u) is the density

function of u. For any t > 0, by Markov’s Inequality,

P (Z1 − h · f(u) ≥ ε) = P (exp{t(Z1 − h · f(u))} ≥ exp(tε))

≤ E[exp{tZ1 − thf(u)}]/ exp(tε) (4.6)

= exp(−tε) · exp{−thf(u)} · E{exp(tZ1)},
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where

E{exp(tZ1)} = E

[
exp

{
t · 1

n

n∑
i=1

K(
ui − u
h

)

}]

= E

[
n∏
i=1

exp

{
t

n
K(

ui − u
h

)

}]

=

[
E

{
exp

(
t

n
K(

ui − u
h

)

)}]n
.

Set the arbitrary positive t to be t = ns where the constant s > 0 is specified

later, and define ϕ1(s) = E{exp(s ·K(ui−u
h

))}. Then (4.6) becomes

P (Z1 − h · f(u) ≥ ε) ≤ [exp(−sε) · exp{−shf(u)} · ϕ1(s)]
n . (4.7)

Now we deal with the last two terms of (4.7):

exp{−shf(u)} · ϕ1(s)

= exp{−shf(u)} · E
{

exp

(
s ·K(

ui − u
h

)

)}
= E

[
exp

{
s

(
K(

ui − u
h

)− hf(u)

)}]
(4.8)

By Taylor’s expansion, for x close to 0, we have

exp(x) = 1 + x+ o(|x|) ≤ 1 + x+ |x| ≤ 1 + 2|x|. (4.9)

The constant s in (4.8) is chosen small enough that (4.9) can be applied.

Based on the conditions (C1) and (C2), (4.8) satisfies the inequality

E

[
exp

{
s

(
K(

ui − u
h

)− hf(u)

)}]
≤ 1 + 2s

∣∣∣∣E {(K(
ui − u
h

)

}
− hf(u)

∣∣∣∣(4.10)

To simplify (4.10), notice that Z1/h is indeed the kernel density estimate of

f(u). Therefore, under (C1) and (C2), the bias of Z1/h is

E(
Z1

h
)−f(u) = E

{
1

h
K(

ui − u
h

)

}
−f(u) =

f ′′(u)

2
µ2(K)h2 +o(h2) = O(h2),
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where µ2(K) =
∫
t2K(t)dt < ∞. See Wand and Jones (1995) for details.

Then for any ε > 0, (4.10) can be simplified by

E

[
exp

{
s

(
K(

ui − u
h

)− hf(u)

)}]
≤ 1 + shO(h2) < 1 +

εs

4

for large n. The last inequality is because the bandwidth h chosen by mini-

mizing the MISE has the rate h = O(n−1/5). Therefore, (4.7) now becomes

P (Z1 − h · f(u) ≥ ε) ≤ {exp(−εs)(1 + εs/4)}n

≤ {(1− εs+ o(εs))(1 + εs/4)}n

≤ {(1− εs+ εs/2)(1 + εs/4)}n

= {1− εs/4− (εs)2/8}n

≤ (1− εs/4)n

Similarly, P (Z1 − h · f(u) ≤ −ε) ≤ (1− sε/4)n, then we have

P (|Z1 − h · f(u)| ≥ ε) ≤ 2(1− sε/4)n ≤ 4(1− sε/4)n.

2. Next prove P (|Z2 − hf(u)m(u)| ≥ ε) ≤ 2(1− sε/2)n, where m(u) = E(y|u).

Using the same techniques as (4.6) – (4.10), we have

exp(−shf(u)m(u)) · ϕ2(s) ≤ 1 + 2s

∣∣∣∣E {yiK(
ui − u
h

)− hf(u)m(u)

} ∣∣∣∣(4.11)

under conditions (C1) – (C3), where ϕ2(s) = E{exp(s · yi ·K(ui−u
h

))}. Now

consider the second term in (4.11). By the iterative expectation principal,

E

{
yiK(

ui − u
h

)− hf(u)m(u)

}
(4.12)

= Eui

{
E(yi|ui)K(

ui − u
h

)− hf(u)m(u)

}
= Eui

{
m(ui)K(

ui − u
h

)− hf(u)m(u)

}
,

where m(ui) = m(u) + m′(u)(ui − u) + m′′(u∗)(ui − u)2/2, u∗ is between u
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and ui, for ui close to u. Thus (4.12) is expanded as

Eui

{
m(ui)K(

ui − u
h

)− hf(u)m(u)

}
= Eui

{
m(u)K(

ui − u
h

)− hf(u)m(u)

}
+m′(u)Eui

{
(ui − u)K(

ui − u
h

)

}
+

1

2
Eui

{
m′′(u∗)(ui − u)2K(

ui − u
h

)

}
,

where the first term

Eui

{
m(u)K(

ui − u
h

)− hf(u)m(u)

}
= m(u)

{∫
K(

x− u
h

)f(x)dx

}
− hf(u)m(u)

= h ·m(u)

{∫
K(t)f(u+ ht)dt

}
− hf(u)m(u) where t = (x− u)/h

= h ·m(u)

[∫
K(t){f(u) + f ′(u)ht+ t · o(h)}dt

]
− hf(u)m(u)

= hf(u)m(u) + h2f ′(u)m(u)

{∫
tK(t)dt

}
+ o(h2)m(u)

{∫
tK(t)dt

}
− hf(u)m(u)

= h2f ′(u)m(u)µ1(K) + o(h2),

the second term

m′(u)Eui

{
(ui − u)K(

ui − u
h

)

}
= m′(u)

∫
(x− u)K(

x− u
h

)f(x)dx

= m′(u)

∫
thK(t)f(u+ th)hdt where t = (x− u)/h

= m′(u)h2
∫
tK(t){f(u) + f ′(u)th+ t · o(h)}dt

= h2f(u)m′(u)µ1(K) + o(h2),

and the last term

1

2
Eui

{
m′′(u∗)(ui − u)2K(

ui − u
h

)

}
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≤ 1

2
C · E

[
(ui − u)2K(

ui − u
h

)

]
, where C s.t. | sup

u∈U
m′′(u)| ≤ C

=
1

2
C ·
∫

(x− u)2K(
x− u
h

)f(x)dx

=
1

2
Ch3 ·

∫
t2K(t)f(u+ ht)dt where t = (x− u)/h

= o(h2).

Hence (4.12) is rewritten as

E{yiK(
ui − u
h

)− hf(u)m(u)} ≤ h2µ1(K){f ′(u)m(u) + f(u)m′(u)}+ o(h2) = O(h2),

leading (4.11) to be

exp(−shf(u)m(u)) · ϕ2(s) ≤ 1 + sO(h2)

Therefore, by the same method as 1, we can obtain

P (|Z2 − hf(u)m(u)| ≥ ε) ≤ 4(1− sε/4)n.

3. In the same fashion, we get all the other inequalities:

P (|Z3 − hf(u)E(xj|u)| ≥ ε) ≤ 4(1− sε/4)n;

P (|Z4 − hf(u)E(x2j |u)| ≥ ε) ≤ 4(1− sε/4)n;

P (|Z5 − hf(u)E(y2|u)| ≥ ε) ≤ 4(1− sε/4)n;

P (|Z6 − hf(u)E(xjy|u)| ≥ ε) ≤ 4(1− sε/4)n.

Therefore, by Lemma 2, there exists some C > 0 such that

P (|ρ̂(xj, y|u)− ρ(xj, y|u)| ≥ ε) ≤ C · (1− sε

C
)n.

Step II. For any ε > 0, derive the upper bound of P (|ρ̂∗j−ρ∗j0| ≥ ε). The notations

are introduced in section 2. Notice that

P (|ρ̂∗j − ρ∗j0| ≥ ε) ≤ P (|ρ̂∗j − ρ∗j |+ |ρ∗j − ρ∗j0| ≥ ε)
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≤ P (|ρ̂∗j − ρ∗j | ≥ ε/2) + P (|ρ∗j − ρ∗j0| ≥ ε/2). (4.13)

The first term of (4.13)

P
(
|ρ̂∗j − ρ∗j | ≥ ε/2

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

ρ̂2(xj, y|ui)−
1

n

n∑
i=1

ρ2(xj, y|ui)

∣∣∣∣∣ ≥ ε/2

)

≤ P

(
1

n

n∑
i=1

∣∣ρ̂2(xj, y|ui)− ρ2(xj, y|ui)∣∣ ≥ ε/2

)

= P

(
n∑
i=1

∣∣ρ̂2(xj, y|ui)− ρ2(xj, y|ui)∣∣ ≥ nε/2

)

≤
n∑
i=1

P
(∣∣ρ̂2(xj, y|ui)− ρ2(xj, y|ui)∣∣ ≥ ε/2

)
≤ nC(1− sε

C
)n. (4.14)

The last inequality in (4.14) is indicated by step I and Lemma 2. And Lemma 1

renders the second term of (4.13)

P (|ρ∗j − ρ∗j0| ≥ ε/2) ≤ 2 exp(−nε
2

8
). (4.15)

Thus (4.13) becomes

P (ρ̂∗j − ρ∗j0| ≥ ε) ≤ nC(1− sε

C
)n + 2 exp(−nε

2

8
).

Step III. Prove P
(
lim infn→∞{minj∈M∗ ρ̂

∗
j −maxj∈Mc

∗ ρ̂
∗
j} > 0

)
= 1. Under con-

dition (C5), there exists some δ > 0 such that minj∈M∗ ρ
∗
j0 − maxj∈Mc

∗ ρ
∗
j0 = δ.

Then we have

P

(
min
j∈M∗

ρ̂∗j ≤ max
j∈Mc

∗
ρ̂∗j

)
= P

(
min
j∈M∗

ρ̂∗j − min
j∈M∗

ρ∗j0 + δ ≤ max
j∈Mc

∗
ρ̂∗j − max

j∈Mc
∗
ρ∗j0

)
= P

(
{max
j∈Mc

∗
ρ̂∗j − max

j∈Mc
∗
ρ∗j0} − {min

j∈M∗
ρ̂∗j − min

j∈M∗
ρ∗j0} ≥ δ

)
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≤ P

(
max
j∈Mc

∗
|ρ̂∗j − ρ∗j0|+ max

j∈M∗
|ρ̂∗j − ρ∗j0| ≥ δ

)
≤ P

(
2 max
1≤j≤p

|ρ̂∗j − ρ∗j0| ≥ δ

)
= P

(
max
1≤j≤p

|ρ̂∗j − ρ∗j0| ≥ δ/2

)
≤

p∑
j=1

P
(
|ρ̂∗j − ρ∗j0| ≥ δ/2

)
≤ pnC(1− δs

2C
)n + 2p exp(−nδ

2

32
).

The last inequality is the direct result from step II, and it goes to 0 as n → ∞,

for p = o(exp(an)) where a < min{log(2C/(2C − δs)), δ2/32}. Then by Fatou’s

Lemma,

P

(
lim inf
n→∞

{min
j∈M∗

ρ̂∗j − max
j∈Mc

∗
ρ̂∗j} ≤ 0

)
≤ lim

n→∞
P

(
min
j∈M∗

ρ̂∗j − max
j∈Mc

∗
ρ̂∗j ≤ 0

)
= 0.

In other words,

P

(
lim inf
n→∞

{min
j∈M∗

ρ̂∗j − max
j∈Mc

∗
ρ̂∗j} > 0

)
= 1.

Therefore, the ranking consistency is proved.

4.2 Proof of Theorem 6

Again, to prove Theorem 6, we need to introduce the following three lemmas.

Lemma 3. Under the same conditions as Lamma 2, suppose for ∀ε > 0 and a

given u ∈ U,

P (|Â(u)− a(u)| ≥ ε) ≤ c1 exp(−ε/h),

P (|B̂(u)− b(u)| ≥ ε) ≤ c2 exp(−ε/h).

Then Â(u)B̂(u), Â(u)− B̂(u), Â(u)/B̂(u) and

√
B̂(u), if well defined, all have the

same forms of inequality.

The proof of Lemma 3 is a straightforward extension of Lemma 2.

Lemma 4: Suppose X is a random variable with E(ea|X|) < ∞ for some a > 0.
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Then for any M > 0, there exist positive constant b and c such that

P (|X| ≥M) ≤ be−cM .

Proof of Lemma 4:

For any nondecreasing and nonnegative function g(x) and any real number x,

P (X ≥ x) ≤ P{g(X) ≥ g(x)} = E{I(g(X) ≥ g(x))}

≤ E

{
g(X)

g(x)
· I(g(X) ≥ g(x))

}
=

1

g(x)
E{g(X) · I(g(X) ≥ g(x))}

≤ Eg(X)

g(x)
.

Take g(x) = eax, then we have

P (|X| ≥M) = P (|X| ≥M,X ≥ 0) + P (|X| ≥M,X < 0)

≤ P (X ≥M) + P (−X ≥M)

≤ EeaX

eaM
+
Ee−aX

eaM

= be−cM ,

where b > 0 such that Eea|X| ≤ b/2, and c = a.

Lemma 4 is used to control the tail distribution of xj and y. In addition, we also

need to impose Lemma 5 below (Zhu, Li, Li and Zhu, 2011) based on Hoeffding’s

inequality to prove Theorem 6.

Lemma 5: Suppose X is a random variable with P (a ≤ X ≤ b) = 1, then

E[exp{s(X − E(X))}] ≤ exp{s2(b− a)2/8} for ∀s > 0.

Based on the above three lemmas, we can now prove Theorem 6. To begin

with, we need to redefine the chosen set M̂ based on an explicit cutoff c3 · n−κ for

the sure screening property (Fan and Lv, 2008), i.e.

M̂ = {j : ρ̂∗j ≥ c3 · n−κ, 1 ≤ j ≤ p}.
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Proof of Theorem 6:

We also accomplish the proof with three steps.

Step I. For any ε > 0, u ∈ U and 1 ≤ j ≤ p, prove

P (|ρ̂(xj, y|u)− ρ(xj, y|u)| ≥ ε) ≤ C · exp(−ε/h).

1. First consider Z1 defined in (4.5). By the same argument as the proof of

Theorem 5, for any t > 0,

P (Z1 − hf(u) ≥ ε) ≤ exp(−tε)
(
E

[
exp

{
t

n

(
K(

ui − u
h

)− hf(u)

)}])n
,

where

E

[
exp

{
t

n

(
K(

ui − u
h

)− hf(u)

)}]
= E

[
exp

{
t

n

(
K(

ui − u
h

)− EK(
ui − u
h

)

)
+
t

n

(
EK(

ui − u
h

)− hf(u)

)}]
= E

[
exp

{
t

n

(
K(

ui − u
h

)− EK(
ui − u
h

)

)}]
· exp

[
t

n

{
EK(

ui − u
h

)− hf(u)

}]
.

According to Lemma 5, since K(·) is bounded by condition (C2), the first

term is bounded by exp{M2
4 t

2/(2n2)}, and from the proof of Theorem 5, the

second term

exp

[
t

n

{
EK(

ui − u
h

)− hf(u)

}]
= exp

[
t

n

{
f ′′(u)

2
µ2(K)h3 + o(h3)

}]
.

Therefore,

P (Z1 − hf(u) ≥ ε) ≤ exp

{
−tε+

M2
4 t

2

2n
+
th3f ′′(u)

2
µ2(K) + o(th3)

}
= exp{−ε/h+ o(1)} by setting t = 1/h

≤ C exp(−ε/h).
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Similarly, P (Z1 − hf(u) ≤ −ε) ≤ C exp(−ε/h), thus,

P (|A− hf(u)| ≥ ε) ≤ C exp(−ε/h).

2. Next consider Z2 in (4.5). Notice that

P (|Z2 − hf(u)m(u)| ≥ ε) ≤ P (|Z2 − EZ2|+ |EZ2 − hf(u)m(u)| ≥ ε)(4.16)

In the proof of Theorem 5, we derived |EZ2 − hf(u)m(u)| = O(h2) ≤ ε/2

provided h = O(n−1/5), thus (4.16) is simplified as

P (|Z2 − hf(u)m(u)| ≥ ε) ≤ P (|Z2 − EZ2| ≥ ε/2). (4.17)

Since the i.i.d random elements in Z2 are not necessarily bounded almost

surely, Lemma 1 is not directly applicable to deal with (4.17). However,

according to condition (C3) and Lemma 4, there exist some positive constant

m1, m2, m3 and m4 such that for any M > 0,

P ( max
1≤j≤p

|xj| ≥M) ≤ m1 exp(−m2M), and P (|y| ≥M) ≤ m3 exp(−m4M).(4.18)

Therefore, for any M > 0,

P (|Z2 − EZ2| ≥ ε/2)

= P (|Z2 − EZ2| ≥ ε/2, |yi| ≤M, ∀i) + P (|Z2 − EZ2| ≥ ε/2, |yi| ≥M for some i)

≤ P (|Z2 − EZ2| ≥ ε/2 | {|yi| ≤M, ∀i}) · P (|yi| ≤M, ∀i) + P (|yi| ≥M for some i)

≤ P (|Z2 − EZ2| ≥ ε/2 | {|yi| ≤M, ∀i}) · {P (|y| ≤M)}n + nP (|y| ≥M). (4.19)

Lemma 1 can now be applied to the first term in (4.19) as yi’s are bounded

by M , and K(·) is bounded by M4 under condition (C2). Together with

(4.18), the above inequality (4.19) is further computed as

P (|Z2 − EZ2| ≥ ε/2)

≤ 2 exp(− nε2

8M2M2
4

) · (1−m3 exp(−m4M))n + nm3 exp(−m4M)
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≤ 2 exp(− nε2

8M2M2
4

) + nm3 exp(−m4M)

≤ 2 exp(− ε
h

nεh

8M2M2
4

) +m3 exp(− ε
h

h(Mm4 − log(n))

ε
) (4.20)

Now consider the first and second term of (4.20) separately. Now take M =

O(nτ ), where 1/5 < τ < 2/5,

nεh

8M2M2
4

=
nεCn−1/5n−2τ

8M2
4

= Cn
4
5
−2τ = O(n

4
5
−2τ )→∞.

Hence

2 exp(− ε
h

nεh

8M2M2
4

) ≤ 2 exp(− ε
h

).

Similarly,

h

ε
(Mm4 − log(n)) = Cn−1/5(nτ − log n) = C(nτ−

1
5 − n−

1
5 log n) = O(nτ−

1
5 )→∞.

Hence

m3 exp(− ε
h

h(Mm4 − log(n))

ε
) ≤ m3 exp(− ε

h
).

Thus (4.20) is simplified as

P (|Z2 − EZ2| ≥ ε/2) ≤ C · exp(− ε
h

).

Furthermore, (4.17) indicates

P (|Z2 − hf(u)m(u)| ≥ ε) ≤ C · exp(− ε
h

).

3. By the same argument as proof of Theorem 5,

P (|ρ̂(xj, y|u)− ρ(xj, y|u)| ≥ ε) ≤ C · exp(−ε/h).



www.manaraa.com

97

Step II: Prove P
(
max1≤j≤p |ρ̂∗j − ρ∗j0| > c3 · n−κ

)
≤ O{np exp(−n 1

5
−κ/ξ)}.

Using the aforementioned techniques in Appendix A,

P (|ρ̂∗j − ρ∗j0| ≥ c3n
−κ) ≤ P (|ρ̂∗j − ρ∗j | ≥ c3n

−κ/2) + P (|ρ∗j − ρ∗j0| ≥ c3n
−κ/2)

≤ nC exp(−c3n
−κ

Ch
) + 2 exp(−c23

n1−2κ

8
).

Hence, the maximum satisfies

P

(
max
1≤j≤p

|ρ̂∗j − ρ∗j0| ≥ c3n
−κ
)
≤

p∑
j=1

P (|ρ̂∗j − ρ∗j0| ≥ c3n
−κ)

≤ p · nC exp

(
−c3n

−κ

Ch

)
+ 2p exp(−c23

n1−2κ

8
)

= O{np exp(−n
1
5
−κ/ξ)},

where 0 ≤ κ < 1/5, and ξ is determined by c3 and C. The last equation is because

the first term dominates the second when h = O(n−1/5). Therefore, the first part

of Theorem 6 is proved.

Step III: Furthermore under condition (C6), prove

P (M∗ ⊂ M̂) ≥ 1−O{nsn exp(−n
1
5
−κ/ξb,c)}.

According to the definition of M̂ in (4.16) and condition (C6),

P (M∗ ⊂ M̂) = P

(
min
j∈M∗

ρ̂∗j ≥ c3n
−κ
)

= P

(
min
j∈M∗

ρ∗j0 − min
j∈M∗

ρ̂∗j ≤ min
j∈M∗

ρ∗j0 − c3n−κ
)

≥ P

(
min
j∈M∗

ρ∗j0 − min
j∈M∗

ρ̂∗j ≤ 2c3n
−κ − c3n−κ

)
≥ P

(
max
j∈M∗

|ρ∗j0 − ρ̂∗j | ≤ c3n
−κ
)

= 1− P
(

max
j∈M∗

|ρ∗j0 − ρ̂∗j | ≥ c3n
−κ
)

≥ 1− snP
(
|ρ∗j0 − ρ̂∗j | ≥ c3n

−κ)
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≥ 1−O{nsn exp(−n
1
5
−κ/ξ)}.
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Chapter 5
Statistical Methods for Ultrahigh

Dimensional Varying Coefficient

Models with Longitudinal Structure

5.1 Methodology

In the last chapter, we focus on the univariate varying coefficient model, that is,

the index variable u is one dimensional, making the observations (ui,xi, yi), i =

1, . . . , n independent with each other. However, one might be interested in the

dynamic pattern of some predictor effects in practice. For example, the effect of

SNP on BMI may depend on not only the baseline age values, but also the dynamic

pattern of age, that is, the coefficients associated with SNP might change as the

person gets older. One of the most widely used technique for this type of problems

is time-varying coefficient models, or longitudinal data structure.

Consider the repeated measurements {(tij,xij, yij), i = 1, . . . , n and j =

1, . . . ,mi}, where yij is the jth outcome from the ith subject corresponding to

the time point tij, xij = (xij1, ..., xijp)
T is the ultrahigh dimensional covariate vec-

tor corresponding to tij. The model with longitudinal data structure is represented

as

yij = xTijβ(tij) + εi(tij), i = 1, . . . , n; j = 1, . . . ,mi, (5.1)
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where β(t) = (β1(t), . . . , βp(t))
T is the vector of smooth parameter function. The

challenge of the above model compared to the univariate varying coefficient model

lies in that although the measurements are assumed to be independent for different

subjects, they can be correlated among different time points within each subject.

Hence the sample {(tij,xij, yij), i = 1, . . . , n; j = 1, . . . ,mi} is no longer inde-

pendently and identically distributed. However, we will show that our screening

procedure still work well under this circumstance.

Specifically, we pool all the observations from different subjects together and

treat them as independent. Based on the definition of the conditional correlation

defined in chapter 3, we first compute ρ̂(xk, y|tij), i = 1, . . . , n; j = 1, . . . ,mi for

each predictor xk, then define the final screening criterion ρ∗ corresponding to xk

as

ρ∗k =
1

N

n∑
i=1

mi∑
j=1

ρ̂2(xk, y|tij),

where N =
∑n

i=1mi.

After ρ∗ value for each predictor xk is obtained, we can rank them in a decreas-

ing order and pick the top d as our screened model. However, since all the N obser-

vations are treated as independent sample points, the total sample size becomes N

instead of n. Hence the moderate size d is now defined as d = ν · [N4/5/ log(N4/5)]

for ν = 1, 2, 3, etc. The simulation results below illustrate the validity of our

screening method.

5.2 Monte Carlo Simulations

We conduct the following Monte Carlo simulations to assess the performance of

the proposed screening technique. In each example, we set p = 1000 and n = 50.

For the ith subject i = 1, . . . , n, we draw mi correlated observations, where mi’s

are integers between 2 and 10, and the time points tij’s are standardized such that

tij ∈ [0, 1], i = 1, . . . , n and j = 1, . . . ,mi. More specifically, we draw mi and tij

from the uniform distributions:

mi ∼ U{2, 3, . . . , 10}, and tij ∼ U [0, 1].
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To make the mi observations correlated with each other, the mi-dimensional ran-

dom error εi = (εi(ti1), . . . , εi(timi))
T is drawn from

εi ∼MVN(0,Σε), where (Σε)jk = 0.5 · ρ|j−k|ε .

Here we set ρε = 0.5. In addition, we generate p correlated predictors based on

AR(1) covariance structure with ρ = 0.4 and ρ = 0.8, and we apply different

generating techniques in different examples. In total, there exist two types of

correlation: One is that among observations within each subject, and the other is

that among different predictors. We repeat the experiment 100 times, and in each

experiment, three submodels are chosen according to the cutoff d = ν · d0, ν =

1, 2, 3, where d0 = [N4/5/ log(N4/5)], N =
∑n

i=1mi. Therefore, the value of total

sample size N varies with simulation.

To evaluate the performance, we still use the previously introduced criteria in

chapter 3, and report the comparison between our screening method and SIS (Fan

and Lv, 2008).

Example 1. In this example, we generate the predictors in the following fashion.

Notice that we need to make the x’s correlated within each of the n subjects. First

we draw n i.i.d random vectors from the multivariate normal distribution:

xi ∼MVN(0,Σ), i = 1, . . . , n, where Σjk = ρ|j−k|, j, k = 1, . . . , p.

Thus the p predictors are correlated. Then treat each row xi as the first observation

for the ith subject, and generate the remaining observations for the same subject

iteratively: Denote the current observation as x1, the corresponding time point as

t1, and the next observation as x2 with the time point t2, then x2 is generated by

x2 = x1 + (t2 − t1)δ, where δ ∼MVN(0, I).

Therefore, the observations within each subject are highly correlated. The nonzero

coefficient functions are

β2(t) = 5I(t > 0.4), β100(t) = 3 + t, β400(t) = 3(2− 3t)2
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β600(t) = 6 sin(2πt), β1000(t) = 3 exp{t/(t+ 1)}, other β(t)’s are 0.

Based on x, β(t) and the random noise ε, the response y is then generated accord-

ing to the true model

yij = β2(tij)xij2+β100(tij)xij100+β400(tij)xij400+β600(tij)xij600+β1000(tij)xij1000+εij.

Table 5.1, 5.2 and 5.3 illustrate the comparison between the two screening proce-

dures in terms of the aforementioned criteria.

Table 5.1. The proportions pj and pa for Example 1.
SIS Feature screening for VCM

d p2 p100 p400 p600 p1000 pa p2 p100 p400 p600 p1000 pa
ρ = 0.4

d0 0.75 0.90 0.84 0.07 0.99 0.04 0.97 0.92 1 0.99 0.99 0.87
2d0 0.88 0.95 0.92 0.13 0.99 0.09 0.97 0.94 1 1.00 0.99 0.90
3d0 0.90 0.96 0.95 0.18 0.99 0.12 1.00 0.96 1 1.00 0.99 0.95

ρ = 0.8
d0 0.80 0.92 0.88 0.05 0.99 0.02 0.94 0.92 0.97 0.97 1 0.82
2d0 0.86 0.97 0.93 0.12 1.00 0.09 0.97 0.98 1.00 0.99 1 0.94
3d0 0.88 0.99 0.93 0.19 1.00 0.14 0.98 0.99 1.00 0.99 1 0.96

Table 5.2. rankj of each true predictor xj for Example 1.

SIS Feature screening for VCM

ρ x2 x100 x400 x600 x1000 x2 x100 x400 x600 x1000
0.4 51.46 21.73 29.18 468.64 5.36 9.95 20.37 5.68 6.85 9.23
0.8 61.18 16.38 38.86 483.73 3.71 17.06 15.17 7.27 11.62 3.99

Table 5.3. The minimum model size M for Example 1.
SIS Feature screening for VCM

ρ 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
0.4 88.25 282.75 448.50 696.00 921.10 5.00 7.00 14.00 28.50 156.25
0.8 80.85 290.00 510.50 739.00 926.10 5.00 9.00 22.50 40.00 113.80

From Table 5.1, the sure screening property (Fan and Lv, 2008) of our proposed

method is visualized. That is, although the observations are now not independent

any more, we are still able to cover most of the important variables with an over-

whelming probability. However, since the empirical mean value for β600 is about



www.manaraa.com

103

0, SIS fails to detect the corresponding predictor for most of the simulation runs.

Furthermore, we can see that the output for ρ = 0.4 and ρ = 0.8 do not differ

much from the table, indicating that our screening procedure is robust against the

correlation between predictors.

The ranking consistency (Zhu, Li, Li and Zhu, 2011) can be obtained from Table

5.2, where all the important predictors rank in the top in terms of the ρ∗ values

with our method, while x600 in SIS does not. The minimum model size M reported

in Table 5.3 captures both sure screening property and ranking consistency.

Example 2. This example mimics the SNP data. Specifically, the predictors are

categorical, taking values of 0, 1 or 2, and they have identical value for different

time points of the same subject. To simulate the SNP data, we first draw n i.i.d.

random vectors x∗’s using the strategy for generating the i.i.d x’s in Example 1,

i.e.

x∗i ∼MVN(0,Σ), i = 1, . . . , n, where Σjk = ρ|j−k|, j, k = 1, . . . , p.

Then we recode the xij as 0, 1, 2, i = 1, . . . , n and j = 1, . . . ,mi, according to the

25% and 75% empirical quantiles of x∗ij, q1 and q3:

xij =


2, if x∗ij ≤ q1;

1, if q1 < x∗ij ≤ q3;

0, if x∗ij > q3.

By doing this we guarantee P (x = 0) = P (x = 2) = 1/4, and P (x = 1) = 1/2.

Since the SNP values stay the same for different time points within each subject,

we have xij = xij′ , j, j
′ = 1, . . . ,mi. All the other quantities are generated in the

same fashion as Example 1. Table 5.4, 5.5 and 5.6 shows the performance of both

out method and SIS.

The performance of the two methods in this example is almost identical with

the previous one, thus our procedure is valid not only for continuous predictors,

but also for categorical x values. SIS still does not work well for x600.

Example 3. This example assesses how the screening procedure works when the
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Table 5.4. The proportions pj and pa for Example 2.
SIS Feature screening for VCM

d p2 p100 p400 p600 p1000 pa p2 p100 p400 p600 p1000 pa
ρ = 0.4

d0 0.78 0.88 0.86 0.03 0.97 0.01 0.97 0.93 0.98 1 0.97 0.85
2d0 0.88 0.96 0.91 0.10 0.99 0.05 0.99 0.95 1.00 1 1.00 0.94
3d0 0.91 0.98 0.95 0.18 0.99 0.15 0.99 0.98 1.00 1 1.00 0.97

ρ = 0.8
d0 0.60 0.87 0.81 0.03 0.99 0.03 0.91 0.88 1 0.98 1 0.78
2d0 0.76 0.91 0.89 0.09 0.99 0.07 0.94 0.93 1 0.99 1 0.86
3d0 0.85 0.93 0.90 0.13 0.99 0.10 0.98 0.93 1 1.00 1 0.91

Table 5.5. rankj of each true predictor xj for Example 2.

SIS Feature screening for VCM

ρ x2 x100 x400 x600 x1000 x2 x100 x400 x600 x1000
0.4 39.57 22.59 43.77 483.87 7.42 10.23 20.31 6.31 6.49 5.86
0.8 91.71 30.79 70.05 505.07 6.56 20.89 33.12 6.56 8.78 4.82

Table 5.6. The minimum model size M for Example 2.
SIS Feature screening for VCM

ρ 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
0.4 106.75 255.00 522.50 710.50 892.55 6.00 9.00 16.00 34.25 112.05
0.8 81.80 300.75 509.00 757.50 975.35 6.95 13.00 22.50 46.50 255.90

important predictors are adjacent, namely, they are highly correlated with each

other. Under the same data generating technique as Example 1, we specify the

nonzero coefficient functions as

β1(t) = 5I(t > 0.4), β2(t) = 3 + t, β3(t) = 3(2− 3t)2

β4(t) = 6 sin(2πt), β5(t) = 3 exp{t/(t+ 1)}, other β(t)’s are 0.

In this fashion, x1 to x5 are active and highly correlated with adjacent correlation

ρ = 0.4 and 0.8. The following tables 5.7, 5.8 and 5.9 demonstrate the two screening

procedure in this example.

From the above three tables, we can see that if the important predictors are

correlated with each other, their signals can be reinforced to a large degree due

to the signals from other adjacent active variables. Therefore, it is much easier to
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Table 5.7. The proportions pj and pa for Example 3.
SIS Feature screening for VCM

d p1 p2 p3 p4 p5 pa p1 p2 p3 p4 p5 pa
ρ = 0.4

d0 0.98 0.98 0.98 0.30 0.99 0.28 0.99 0.99 1 1 1 0.98
2d0 1.00 0.99 1.00 0.41 1.00 0.41 1.00 0.99 1 1 1 0.99
3d0 1.00 0.99 1.00 0.45 1.00 0.45 1.00 0.99 1 1 1 0.99

ρ = 0.8
d0 1 1 1 0.85 1 0.85 1 1 1 1 1 1
2d0 1 1 1 0.90 1 0.90 1 1 1 1 1 1
3d0 1 1 1 0.92 1 0.92 1 1 1 1 1 1

Table 5.8. rankj of each true predictor xj for Example 3.

SIS Feature screening for VCM

ρ x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
0.4 9.49 5.51 7.44 336.12 3.82 3.90 5.22 3.21 6.10 4.12
0.8 4.46 2.42 2.25 41.38 2.82 3.29 2.48 2.38 5.31 2.75

Table 5.9. The minimum model size M for Example 3.
SIS Feature screening for VCM

ρ 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
0.4 10.90 48.00 228.00 630.25 938.50 5.00 5.00 6.00 11.00 31.35
0.8 5.00 5.00 9.00 22.25 223.55 5.00 5.00 5.00 6.00 12.05

include all the important predictors than when they fall apart. Especially when

the correlation is high, i.e. ρ = 0.8, even SIS has a relatively large probability to

include the true model. But our method still outperforms SIS in terms of the three

criteria.

5.3 FHS: Longitudinal Data Structure

In the last chapter, we assume the effect of SNP on BMI depend on the value

of age, and the coefficient plots support our statement. However, we only focus

on the baseline age, namely, we only use a single value of age for the varying

coefficient model and assume each subject only possesses one age value. Observing

the data, however, each subject was followed by 5 to 26 times, hence we are able

to study the dynamic pattern of the effect of SNP on the response BMI. Therefore
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in this section, we consider the longitudinal structure model (5.1), where the time

points tij’s are now characterized by different age values uij of each subject. More

specifically, the model studied here can be represented as:

yij = β0(uij) + (xa)
T
i βa(uij) + (xd)

T
i βd(uij) + εi(uij), (5.2)

where i = 1, . . . , n, j = 1, . . . ,mi, and mi is between 5 and 26. The definition of

βa(u), βd(u), xaj and xdj are the same as before, and the x-values stays identical

for different ages of each subject.

To reduce ultrahigh model size and select important SNPs for dynamically

explaining BMI, we apply the aforementioned two-stage approach.

Stage 1: feature screening procedure

In the first stage, the feature screening method for longitudinal data introduced in

last subsection is applied. Note that since the pooled sample size is now N = 6, 590,

so the moderate sample size d is defined as d = [N4/5/ log(N4/5)] = 161, that is,

the submodel is chosen as

Mγ = {k : 1 ≤ k ≤ 2p, ρ∗k is among the first 161 largest of all ρ∗’s}.

Then we obtain the submodel of size 161 as follows:

yij = xTijβ(uij) + εij, i = 1, . . . , n; j = 1, . . . ,mi,

where xij is now a 161-dimensional vector, and β(u) = (β1(u), . . . , β161(u))T .

Stage 2: Post-screening variable selection

In the variable selection stage, we first treat the N observations from n subjects as

independent, and conduct three penalized regression techniques, LASSO, Adaptive

LASSO and SCAD for further selecting important SNPs based on the submodel

above. As is known, misspecification of covariance structure does not affect the

consistency of the estimations. And after we select the final significant SNPs, the

profile weighted least squares approach (Fan, Huang and Li, 2007) cooperating the

covariance matrix estimation is applied to improve the efficiency of the estimated
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coefficients and predicting trajectories of individuals.

First, pooling all the N observations from different subjects together, the sub-

model chosen in the first stage becomes

yi = xTi β(ui) + εi, i = 1, . . . , N, (5.3)

where β(u) = (β1(u), . . . , β161(u))T , the X-matrix consists of the corresponding

columns from the original SNP data, and the pooled sample size N =
∑n

i=1mi =

6, 590.

Before applying any variable selection technique to the model, we first look at

the 161 plots for the unpenalized coefficient estimations for the 161 SNPs together

with their confidence bands, as shown in Figure 5.1. We are able to visually

detect some significant SNPs whose confidence bands do not contain 0, and their

corresponding coefficients do differ with age. Hence a variable selection technique

incorporating varying coefficient structure are desirable.

Following the idea of last chapter, we still apply three penalized regression

methods with LASSO, Adaptive LASSO and SCAD penalties. However, when we

choose the tuning parameter λ, since we originally have relatively large model size

161 here, the traditional criteria AIC, BIC and GCV are too conservative to get

a sparse model, because even for the least conservative BIC, it tends to assign

the weight proportional to the model size; AIC and GCV tend to be even more

conservative and they yield identical models. The chosen model size and the tuning

parameter selection plots are demonstrated in Table 5.10 and Figure 5.2.

Table 5.10. The chosen model sizes based on AIC, BIC, GCV.

screening+LASSO screening+AdaptiveLASSO screening+SCAD
AIC 161 161 155
BIC 135 115 102
GCV 161 161 155

To obtain more sparse models, we adopt two new tuning parameter selec-

tion techniques here, the extended Bayesian information criteria (EBIC, Chen and

Chen, 2008) and the modified Bayesian information criteria (MBIC, Bogdan et.al,
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Figure 5.1. The estimated coefficient functions of the screened model
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2004), which are defined as follows:

EBIC = N log(RSS) + dfλ log(N) + 2γ log

(
df0
dfλ

)
MBIC = N log(RSS) + dfλ log(N) + 2dfλ log(df0/2.2− 1),
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where dfλ is defined as (3.13) in last chapter (Fan, Zhang, and Zhang, 1999):

dfλ = γK |U|dλ{K(0)− 0.5

∫
K2(u)du}/h,

and df0 is the corresponding degree of freedom for the original full model:

df0 = γK |U|d{K(0)− 0.5

∫
K2(u)du}/h,

with d = 161 here. To obtain the residual sum of squares RSS above, we need
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first select significant variables given a λ, then fit an unpenalized varying coefficient

model based on the chosen predictors and compute the RSS, that is,

RSSλ =
1

N

N∑
i=1

{yi − xT
i β̂λ0(ui)}2,

where β̂λ0(u) is the unpenalized coefficient estimation based on the chosen predic-

tors corresponding to λ.

Figure 5.3 and Table 5.11 report some model selection results from these two
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methods. Figure 5.3 depicts how the two criteria change over different λ’s, and we

adopt the λ that minimizes the corresponding criterion. From Table 5.11, both

EBIC and MBIC yield much sparser models than AIC, BIC, and GCV. And be-

tween these two, MBIC is less conservative. The SCAD penalty together with

MBIC produces the sparsest model with only 48 significant SNPs. Furthermore,

among the 6 chosen models, smaller models are nested within larger ones, and

based on the generalized likelihood ratio test (Fan and Zhang, 2001) mentioned in

last chapter, the sparsest model is already sufficient to explain the response BMI.
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Therefore, the remaining results are based on this model, with the nonzero coef-

ficients βk(u), k ∈ S, and the significant index set S is the subset of {1, . . . , 161}
from model (5.3), where

S = {1, 3, 4, 9, 15, 24, 25, 32, 34, 35, 36, 38, 40, 45, 57, 59, 64, 65, 74, 77, 79, 88, 90, 92,

94, 95, 99, 101, 105, 106, 108, 112, 114, 116, 117, 123, 128, 129, 132, 139, 140, 141,

142, 143, 145, 153, 154, 161}.

Table 5.11. The chosen model sizes based on EBIC and MBIC.

screening+LASSO screening+AdaptiveLASSO screening+SCAD
EBIC 118 78 106
MBIC 71 55 48

After we obtain the final sparse model with 48 SNPs, we can check the co-

efficient plots of the significant SNPs, as described in Figure 5.4. Recall that

the penalized regression techniques enable us to estimate the coefficient functions

at the same time as variable selection, and the red curves (the first and fourth

columns) are the corresponding penalized estimations for the coefficient functions.
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Figure 5.2. Tuning parameter selection based on AIC, BIC, GCV.
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Meanwhile, we can also select significant variables first and then refit a model with

the chosen SNPs without penalizing any coefficient. The results are more stable

and reliable since we use the same information to estimate less parameters. The

blue curves (the second and fifth columns) depict these unpenalized coefficient es-

timations. And the green curves (the third and sixth columns) are merely copy

of the unpenalized estimation of the same SNPs from the original full model with

size 161. For each significant SNP, the three estimated coefficient functions along

with their confidence bands do not differ much. Here we take the unpenalized

estimations (the second and fifth columns)for our further study.
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Figure 5.3. Tuning parameter selection based on EBIC and MBIC.
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From Figure 5.4, we notice that the confidence bands of some coefficient func-

tions contain constant lines, that is, we can treat the corresponding coefficient

functions as constants without varying with age, although they are significantly

different from 0. More specifically, the chosen model is now modified as a semi-

parametric varying-coefficient partially linear model:

yij = xT1,ijβ1(uij) + xT2,ijβ2 + εi(uij), i = 1, . . . , n; j = 1, . . . ,mi,

where the non-constant coefficient vector β1(u) consists of βk(u), k ∈ F with

F = {9, 24, 32, 35, 40, 45, 57, 59, 65, 77, 88, 90, 99, 112, 114, 116, 117, 123, 128,

132, 140, 141, 143, 145, 161},

the constant coefficient vector β2 contains βk, k ∈ C, with

C = S/F = {1, 2, 3, 15, 25, 34, 36, 38, 64, 79, 92, 94, 95, 101, 105, 106, 108, 129, 139, 142},
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Figure 5.4. Estimated coefficients of penalized, unpenalized, and full model.
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and the SNP vectors x1 and x2 follow the same index sets.

We now apply the profile weighted least squares approach (PWLS, Fan, Huang

and Li, 2007) to enhance the efficiency of our coefficient estimation, by taking into

account the covariance structure which are estimated using minimum generalized

variance (MGV) method. Assume εi has mean 0 and covariance matrix Σi. Then

Σi is fully determined by the variance and correlation within subjects. Here we

denote var{εi(u)|x1,x2} = σ2(u) and consider the ARMA(1,1) structure as the

within subject correlation, i.e. corr(εi(u), εi(v)) = γρ|u−v|. Hence the correlation
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Figure 5.4 (Cont’d). Estimated coefficients of penalized, unpenalized, and full
model.
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parameter vector to be estimated is θ = (γ, ρ).

Since the estimations of σ2(u) and θ depend on β̂1(u) and β̂2, and on the

other hand, improving the efficiency of β̂1(u) and β̂2 relies on the σ̂2(u) and θ̂.

Therefore, the estimation procedure must be done in steps:

Step 1. Conduct PWLS approach to estimate β1(u) and β2 iteratively by ignoring

the within subject correlation for the moment:
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Figure 5.4 (Cont’d). Estimated coefficients of penalized, unpenalized, and full
model.
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(1) Given a current estimate for the constant coefficient vector β̂2, define y∗ij =

yij − xT2,ijβ̂2, and the corresponding vector y∗ = (y∗T1 , . . . ,y∗Tn )T where y∗i =

(y∗i1, . . . , y
∗
imi

)T . Then the varying coefficient vector β1(u) for a given value

u is computed as

β̂1(u) = (Id,0d)(Γ
TKΓ)−1ΓTKy∗,

where Id is the d × d identity matrix, 0d is the d × d zero matrix, Γ =
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Figure 5.4 (Cont’d). Estimated coefficients of penalized, unpenalized, and full
model.
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(X1,UX1), with U = diag(u11 − u, . . . , unmn − u), X1 = (XT
11, . . . ,X

T
1n)T ,

X1i = (x1,i1, . . . ,x1,imi)
T , and K = diag(Kh(u1 − u), . . . , Kh(un − u)) where

Kh(·) is the transformed kernel function as introduced before. The band-

width can be selected by the multifold cross-validation.

(2) Given the current β̂1(u), we can estimate the constant coefficient vector β2
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with the idea of weighted least squares:

β̂2 = {XT
2 (I− S)TW(I− S)X2}−1XT

2 (I− S)TW(I− S)y,

where X2 = (XT
21, . . . ,X

T
2n)T with X2i = (x2,i1, . . . ,x2,imi)

T . W is the work-

ing covariance matrix, taken to be identity matrix for the moment.

Step 2. After estimated the coefficient functions in the initial step, we are now

able to apply MGV method to estimate σ2(u) and θ:

(1) We estimate σ2(u) by the kernel estimator:

σ̂2(u) =

∑n
i=1

∑mi
j=1 γ̂

2
ijKh1(u− uij)∑n

i=1

∑mi
j=1Kh1(u− uij)

,

where γ̂ij’s are residuals from the model estimated in Step 1, and the band-

width h1 in Kh1(·) is chosen to minimize MISE.

(2) The estimated correlation parameter vector θ̂ is obtained to minimize the

estimated variance of the constant coefficient β2, that is,

θ̂ = argminθ|Ĝ(σ̂2,θ)|,

where | · | is the determinant of a matrix, and

Ĝ(σ̂2,θ) = ĉov(β̂2|uij,x1,ij,x2,ij) = D−1V̂D−1,

with D = XT
2 (I − S)TW(I − S)X2, V̂ = XT

2 (I − S)TWRWT (I − S)X2,

R = diag(r1r
T
1 , . . . , rnr

T
n ), and ri = (ri1, . . . , rimi).

Step 3. After obtained the estimations for the variance σ2(u) and correlation

parameter θ and hence Σi, we update the working covariance W with Σ̂i’s, and

repeat the first step. Therefore, we incorporate the covariance structure into the

estimation of coefficient vectors and enhance their efficiency by reducing the vari-

ation.
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However, if our goal is more about detecting significant SNPs for explaining the

dynamic BMI change, we can stop at the variable selection stage, because using

the misspecified covariance matrix does not affect the consistency of the penalized

estimators.
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Chapter 6
Partial Residual Two-Stage

Approach for Partially Linear Models

with Longitudinal Data Structure

6.1 Methodology

In this section, we present a new two-stage approach, called the partial residual

two-stage approach for ultrahigh dimensional partial linear models (PLM). A fast

screening procedure is proposed in the first stage specifically for PLM to reduce

dimensionality, referred to as partial residual sure independence screening (PRSIS).

In the second stage, we combine the partial residual method and standard variable

selection for linear models to further select important variables.

Model and notation

Suppose the random sample {(tij,x(tij), y(tij)), i = 1, . . . , n; j = 1, . . . , Ti} is

from the partial linear model:

y(t) = α(t) + βTx(t) + ε(t) (6.1)

where n is the number of subjects (sample size), Ti is the number of observations

for subject i, tij is the time point for the jth observation of the ith subject, y(t)

is the response variable, x(t) = (x1(t), . . . , xp(t))
T is the p-dim covariate vector
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at time t, α(t) is an unspecified baseline function of t , β = (β1, . . . , βp)
T ∈ Rp

is the p-dim coefficient vector independent of t, and ε(t) is the stochastic random

noise with mean 0. In this paper, we assume p >> n, leading to the ultrahigh

dimensionality.

Define xj(t) as a relevant or important (irrelevant or unimportant) predictor if

βj 6= 0 (βj = 0). The true model is denoted as M, i.e.

M = {j : 1 ≤ j ≤ p, βj 6= 0}. (6.2)

Denote the number of truly relevant predictors to be d0 = |M|, where |M| is the

cardinality of set M. We impose the sparsity assumption that is standard for

high and ultrahigh dimensional models: the number of relevant predictors d0 to

be much less than p, hopefully less than the sample size n.

Stage 1: partial residual sure independence screening for PLM

We first present a new screening approach, called partial residual sure independence

screening (PRSIS) for partial linear models (PLM) in stage 1, which reduces the

ultrahigh dimension p of the predictors to a moderate scale d < n. Consider the

sample version of the partial linear model (6.1):

y(tij) = α(tij) + βTx(tij) + ε(tij), i = 1, . . . , n; j = 1, . . . , Ti. (6.3)

Although the n subjects are independent, the observations within each subject

are correlated, referred to as within-subject correlation. However, in the screening

stage, we need a fast and efficient algorithm to reduce dimensionality, hence we

ignore the within-subject correlation in this stage. Consequently, we may pool the
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data into the following formation:

t = (ti)N×1 =



t11
...

t1T1

t21
...

t2T2
...

tn1
...

tnTn



y = (yi)N×1 =



y(t11)
...

y(t1T1)

y(t21)
...

y(t2T2)
...

y(tn1)
...

y(tnTn)



X = (xT
i )N×p =



x(t11)
T

...

x(t1T1)
T

x(t21)
T

...

x(t2T2)
T

...

x(tn1)
T

...

x(tnTn)T


(6.4)

where N =
∑n

i=1 Ti is the pooled sample size, ti and yi are the ith elements of t

and y, and xT
i is the ith row of X. Therefore, the model becomes

yi = α(ti) + βTxi + εi, i = 1, . . . , N. (6.5)

Based on model (6.5), Fan and Huang (2005) showed that if we consider the

partial residual of y and x after regressing on t, the partial linear model can

be easily transformed to a linear regression model. Explicitly, take conditional

expectation of both sides of model (6.5) given ti,

E(y|ti) = α(ti) + βTE(x|ti) + E(ε|ti), (6.6)

then subtract (6.6) from (6.5), the nonparametric component α(ti) is canceled

and the model becomes

y∗i = βTx∗i + ε∗i , i = 1, . . . , N, (6.7)

where y∗i = yi−E(y|ti), x∗i = x(ti)−E(x|ti) and ε∗i = εi−E(ε|ti). Therefore, the

model (6.5) is transformed to the linear model (6.7), where various independence

screening techniques for linear models can be applied. See Fan and Lv (2008),
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Wang (2009), etc.

However, to implement this procedure in practice, we need to estimate the

unknown quantities E(Y |ti) and E(X|ti). The kernel smoothing technique is used

to compute the NW estimates (Nadaraya, 1964; Watson, 1964) of these conditional

expectations. Specifically, for any given t, the NW estimator of the mean of a

random variable z is defined as

Ê(z|t) =
N∑
k=1

ωk(t)zk, where ωk(t) =
Kh(tk − t)∑N
k=1Kh(tk − t)

(6.8)

with Kh(·) = h−1K(·/h) and K(·) is a nonnegative kernel function. The band-

width h is chosen to minimize the mean squared error of the estimator. Since the

resulting estimator of local smoothing technique is robust against the choice of

kernel function, we take K(·) to be the Epanechnikov kernel function for simplic-

ity, i.e. K(t) = 0.75(1− t2)I(|t| < 1), where I(E) is the indicator function taking

value 1 if the statement E is true and 0 otherwise. Therefore, E(y|ti) and E(x|ti)
are estimated, and hence y∗i and x∗i . For notation simplicity, we still denote the

estimates as y∗i and x∗i .

Then based on model (6.7), the standard independence screening procedures for

linear models can be applied. In this paper, we employ sure independence screening

(SIS, Fan and Lv, 2008) to rank the predictors according to the marginal sample

pearson correlation criterion ρ̂. To compute ρ̂j for each 1 ≤ j ≤ p, write the

components in (6.7) in matrix formation:

y∗ = (y∗i )N×1 =



y1 − E(y|t11)
...

yT1 − E(y|t1T1)
...

yN − E(y|tnTn)


(6.9)
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X∗ = (x∗Ti )N×p =



xT
1 − E(xT|t11)

...

xT
T1
− E(xT|t1T1)

...

xT
N − E(xT|tnTn)


, (X∗1, . . . ,X

∗
p), (6.10)

where y∗i is the ith element of y∗, x∗Ti is the ith row of X∗, and X∗j is the jth

column of X∗. Therefore, ρ̂j is defined as

ρ̂j =
(X∗j − X

∗
j)

T(y∗ − y∗)√
(X∗j − X

∗
j)

T(X∗j − X
∗
j)(y

∗ − y∗)T(y∗ − y∗)
, (6.11)

where the sample mean z of a N -dim vector z is computed by z =
∑N

i=1 zi with zi

being the ith element of z. In the above calculation, z is taken to be y∗ and X∗j .

Therefore, we rank the ρ̂ scores and select the top d predictors. The submodel

index set M̂ is taken to be

M̂ = {j : 1 ≤ j ≤ p, ρ̂j ranks among the top d}.

Following Fan and Lv (2008), we take d = bN4/5/ log(N4/5)c, where bac is the inte-

ger part of a for a > 0. We will show in the simulation study that the chosen model

M̂ has an overwhelming probability to include the true modelM defined in (6.2).

Furthermore, we can always take more conservative d to be d = νbN4/5/ log(N4/5)c
in practice, where ν is an integer larger than 1, to enlarge the probability of se-

lecting all the relevant predictors. We name this screening technique as partial

residual sure independence screening (PRSIS).

Stage 2: post-screening variable selection for PLM

In the first stage, we reduce the ultrahigh dimension p down to the moderate scale

d by PRSIS, which is typically less than the sample size n. However, although

all the truly relevant predictors are included in the model with large probability,

there are still many irrelevant predictors in the chosen submodel M̂. To address

this issue, we adopt the second stage, where the standard shrinkage estimation

procedures are applied to further select the important variables.
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For easy presentation, we use the same model formation as (6.5) for the chosen

submodel:

yi = α(ti) + βTxi + εi, i = 1, . . . , N, (6.12)

but the dimension of β and xi becomes d < n instead of ultrahigh p >> n. To

further select important variables in partial linear model, the profile method is

applied based on the idea of Fan and Li (2004), where we iteratively estimate α(t)

and select important predictors x. The algorithm is briefly described as follows.

(1) (Initial estimate of β.) Based on model (6.12), we have the corresponding

linear model with the same form of (6.7) using partial residual method, i.e.

y∗i = βTx∗i + ε∗i where β and xi are now d-dim. Compute the unpenalized

least square estimate β̂(0) from this model as initial value of β. That is,

β̂(0) = (X∗TX∗)−1X∗Ty∗. (6.13)

(2) (Initial estimate of α(t).) Plug β̂(0) into model (6.12), and obtain a new

model,

y
(0)
i = α(ti) + εi, where y

(0)
i = yi − β̂(0)Txi. (6.14)

Model (6.14) is indeed a nonparametric model which can be represented as

E(y(0)|t) = α(t). Therefore, for any given t, α(t) can be estimated using the

same local smoothing technique as (6.8), except that the bandwidth needs

to be chosen based on y(0). Write the resulting estimate as α̂(0)(·) and the

chosen bandwidth as h2.

(3) (Compute partial residual.) Refit E(y|t) and E(x|t) using h2 chosen in step

(2), and hence get new y∗ and X∗, referred to as y(1) and X(1).

(4) (Shrinkage estimation of β.) Estimate β by minimizing the penalized loss

function Q(β) based on y(1) and X(1):

β̂ = argminβQ(β) = argminβ

{
1

2
‖y(1) −X(1)β‖2 +N ·

d∑
j=1

pλj(|βj|)

}
.(6.15)
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where βj is the jth element in β. The jth predictor xj is selected into the final

model if β̂j 6= 0. Various penalty functions are deeply explored in literature

to solve for the minimization problem (6.15). See Tibshirani (1996), Zou

(2006), Fan and Li (2001), among others.

(5) (Refit α(t).) We can update the estimate of α(t) by the same technique as

(2) with bandwidth h2 and selected predictors.

With the two-stage approach, we obtain the final sparse model along with the

estimated baseline function α(·) and regression coefficient β. We name the whole

procedure as partial residual two-stage approach. In the following section, we

provide some Monte Carlo simulation examples to illustrate the performance of

this procedure.

6.2 Monte Carlo Simulation Studies

We conduct four simulation examples to evaluate the finite-sample performance

of the partial residual two-stage approach for ultrahigh dimensional partial linear

models. Example 1-3 mainly focus on the first stage, and illustrate two desir-

able properties of PRSIS empirically: the sure screening property (Fan and Lv,

2008), which states that the procedure has a large probability to include all the

truly relevant predictors; and the ranking consistency property (Zhu, Li, Li and

Zhu, 2011), where the screening criterion ensures that all the relevant predictors

tend to rank before all the irrelevant predictors with an overwhelming probability.

Furthermore, we compare our screening procedure with SIS (Fan and Lv, 2008),

and show that if the true model has a nonparametric component α(·), our method

performs consistently better than SIS, where the nonparametric pattern is ignored.

Example 4 considers both the two stages, mainly the second, and compares the

results from three penalty functions and different tuning parameter selection rules.

Simulation settings and evaluation criteria

For all the four examples below, we generate the random noise ε from normal

distribution with mean 0 and variance that ensure the signal-to-noise ratio is

not weak, specifically, choose var(ε) such that the population R2 = var(α(t) +
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βTx(t))/var(y(t)) is approximately 75% for any fixed t. We consider the AR(1)

correlation structure for the p-dim predictor x (Tibshirani, 1996), that is,

corr(xj, xk) = ρ|j−k|, 1 ≤ j, k ≤ p,

where xj and xk are the jth and kth element of x. We set ρ = 0.5 in all the

examples. For the coefficient vector β = (β1, . . . , βp)
T, we assume β1 = 3, β4 = 1.5,

β7 = 2, and all the other βj’s are 0 (Fan and Li, 2001), so only x1, x4 and x7

are truly relevant predictors. In addition, a total of m=100 simulation runs are

conducted for each example.

The first three example focus on the screening stage, where the following criteria

(Zhu, Li, Li and Zhu, 2011) are considered to assess the performance of PRSIS

and to compare it with SIS.

• pj: The proportion of the jth predictor being selected into the model with

size d.

• pa: The proportion that all relevant predictors are selected into the model.

Both pj and pa are used to verify the sure screening property introduced

above.

• Rj: The rank of ρ̂j in a decreasing order. This criterion illustrates the ranking

consistency property that all important predictors should rank in the top.

• M : the minimum size of the model which contains all the true predictors, in

other words, the largest rank of the true predictor. We report the 5%, 25%,

50%, 75% and 95% quantiles of M from m repetitions. We can assess both

sure screening and ranking consistency property from M .

For each of the three examples, we consider three predictor dimensions (p =

500, 1000, 2000), and the submodel size is taken to be d = bN/ log(N)c. The

experiment settings are described as follows.

Example 1. (Single observation) In this example, we consider the ordinary

partial linear model without the longitudinal data structure, hence assume each

subject has only one observation, i.e. Ti = 1, i = 1, . . . , n in model (6.3), and N =

n. We consider two sample sizes n = 100, 200. The p-dim predictor xi is generated
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independently and identical-distributively (i.i.d.) from multivariate normal with

mean 0, variance 1, and the aforementioned AR(1) correlation structure, i.e.

xi ∼MVN(0, (Σjk)p×p), where Σjk = 0.5|j−k|, j, k = 1, . . . , p (6.16)

The univariate index variable ti is generated from Unif(0, 1), independent of x. The

nonparametric baseline function α(t) = exp(3t) which is nonlinear and monotone.

Example 2. (Longitudinal observations) We study longitudinal data structure

in model (6.3). Therefore, there exist within-subject correlation, hence we no

longer have i.i.d. observations. We draw Ti, i = 1, . . . , n, the number of observa-

tions for each subject in model (6.3), and the time points tij from the following

discrete and continuous uniform distributions:

Ti ∼ Unif{2, 3, . . . , 10}, and tij ∼ U(0, 1).

To make the Ti observations for subject i correlated with each other, the Ti-

dimensional random error εi = (εi(ti1), . . . , εi(tiTi))
T is drawn from

εi ∼MVN(0,Σε), where (Σε)jk = var(ε) · ρ|j−k|ε .

Here we set ρε = 0.5, and var(ε) is chosen to satisfy the signal-to-noise ratio

as aforementioned. Furthermore, we generate the predictors xi in the following

fashion to create the correlation among the Ti observations from the same subject.

First we draw n i.i.d random vectors from (6.16), and treat the ith vector of the

n samples as the first observation for the ith subject, then generate the remaining

observations for the ith subject iteratively: Denote the current observation as x1,

the corresponding time point as t1, and the next observation as x2 with the time

point t2, then x2 is generated by

x2 = x1 + (t2 − t1)δ, where δ ∼MVN(0, I).

Therefore, the observations within each subject are highly correlated. Therefore,

we create two types of correlations: the correlation among predictors, and the

within-subject correlation among observations. We take two sample size n =
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50, 100, and the nonparametric component α(t) = 10 sin(2πt), which is nonlinear

and non-monotonic.

Example 3. (Mimic SNP data) This example studies the longitudinal partial

linear model with predictor being categorical, as in SNP data. Specifically, the

predictors take values of 0, 1 or 2, and remain unchanged for different time points

of the same subject. We first draw n i.i.d. random vectors x∗’s by (6.16), and

recode the xij as 0, 1, 2, i = 1, . . . , n and j = 1, . . . , Ti, according to the 25% and

75% empirical quantiles of x∗ij, q1 and q3:

xij =


2, if x∗ij ≤ q1;

1, if q1 < x∗ij ≤ q3;

0, if x∗ij > q3.

By doing this we guarantee P (x = 0) = P (x = 2) = 1/4, and P (x = 1) = 1/2.

Since the SNP values stay the same for different time points within each subject,

we have xij = xij′ , j, j
′ = 1, . . . , Ti. Moreover, the time points tij are generated

from discrete uniform distribution to mimic the sparse observation time, i.e. tij ∼
Unif{0.1, 0.2, . . . , 1}. And the nonparametric function α(t) = exp(3t). All the

other quantities are generated in the same fashion as Example 2.

All the above three experiments focus the screening stage, while the following

example 4 evaluate both stage 1 and 2.

Example 4. All the data generation techniques are identical with Example

3. But after the screening stage, we further conduct standard variable selection

procedures to refine the screened submodel. We study three penalty functions:

LASSO (Tibshirani, 1996), Adaptive LASSO (Zou, 2006) and SCAD (Fan and Li,

2001), and three tuning parameter selection criteria: cross-validation (CV, Picard

and Cook, 1984), AIC (Akaike, 1974) and BIC (Schwarz, 1978) criterion.

For this example, denote M̂(k) and β̂j(k), k = 1, . . . ,m to be the final chosen

model and the jth estimated coefficient by the partial residual two-stage approach

in the kth simulation run. We impose the following criteria to compare the perfor-

mances of different penalty functions and tuning parameter selection rules (Liang,

Wang and Tsai, 2011):

• The average size of the final chosen model: m−1
∑m

k=1 |M̂(k)|.
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• The coverage probability of the true model: 100%×m−1
∑m

k=1 I(M̂(k) ⊃M).

• The percentage of correct zero: 100%× {(p− d0)m}−1
∑m

k=1

∑p
j=1 I(β̂j(k) =

0)I(βj = 0), where d0 = |M|. This quantity studies the probability of

identifying the unimportant predictors.

• The average heritability: m−1
∑m

k=1 v̂ar(Xβ̂(k))/v̂ar(y), where v̂ar(z) is the

sample variance of vector z. Notice that the heritability is expected to be

relatively low because we do not take into account the baseline function α(t),

which may explain the variation of y to a certain degree.

Simulation results

The detailed output of the four examples are reported in Tables 6.1-6.4. Table 6.1-

6.3 illustrate empirically the performance of PRSIS and the comparison of PRSIS

and SIS for Example 1-3. All these three tables show that PRSIS performs con-

sistently better than SIS, especially when the sample size n is relatively small.For

example, in Table 6.1, when n = 100, the probabilities pa that PRSIS includes all

the true predictors are 81%, 85% and 94% for p = 2000, 1000, 500, which are

significantly larger than that of SIS (41%, 49% and 63%). Same conclusion can be

drawn from other criteria and other examples. This is not surprising because SIS

fails to capture the nonparametric component α(t).

Recall that Example 1 does not have longitudinal data structure and all the

observations are i.i.d., while Example 2 consider multiple observations for each

subject and contain within-subject correlation. However, the comparison between

Table 6.2 and Table 6.1 show that although PRSIS ignores the longitudinal struc-

ture, we do not lose much information and still have large probability to include all

important predictors in the screened submodel. In addition, the results in Table

6.2 is generally more thrilling than that in Table 6.3, which is because we gain

less information by generating discrete time point tij and categorical x. To save

space, we mainly focus on PRSIS in example 2 in the discussion below. Results

and conclusions are directly applicable for other examples.

In the PRSIS part of Table 6.2, p1, p4, p7 and pa depict the probability of

including each important predictor x1, x4 x7 and including all these three. The

magnitude increases and tends to 1 as the sample size n increases from 50 to 100,
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for every value of p, which demonstrates the sure screening property of PRSIS that

as n goes to infinity, it has probability tending to 1 to include all the important

predictors. The small values of R1, R4 and R7 indicate that x1, x4 x7 rank in the

top, indicating the ranking consistency property. Moreover, they are consistent

with the magnitude of true value of coefficients β1 = 3, β4 = 1.5 and β7 = 2, i.e.

x1 tends to rank almost the first since β1 is the largest, x7 is ranking between x1

and x4, and x4 ranks behind the others because β4 is the smallest among the three.

The minimum model size M states that generally (focus on the median of M based

on 100 simulation runs)we only need small models to include all the important

predictors. Furthermore, all the results improve substantially as n increases. The

reason is that all the desirable properties (e.g. sure screening property and ranking

consistency) hold theoretically only when n → ∞. Therefore, when the sample

size n is small, the results are not as good. Nevertheless, we can always take

d = νbN4/5/ log(N4/5)c, ν = 2, 3, . . . instead of d = bN4/5/ log(N4/5)c used in all

examples in this paper to enlarge the probability of including important predictors

in practice.

Table 6.4 examine the second stage performance. To save space, we only report

the output from PRSIS for n = 100, p = 500, 1000 in the first stage. From the ta-

ble, SCAD+BIC tends to produce the sparsest model (Average Model Size is 8.51

for p = 500 and 9.29 for p = 1000), and hence highest probability of identifying

unimportant predictors (98.89% for p = 500 and 99.36% for p = 1000). Further-

more, the average heritability of SCAD+BIC is higher than any other method

(37.49% for p = 500 and 34.77% for p = 1000). Since all average model sizes are

larger than 3, the true model size, we have large coverage probability and perfect

percentage of incorrect zero for all the methods.

6.3 Real Data Analysis: Soybean Data

(Introduction to soybean data, which I don’t have the information.. And why it’s

appropriate to use partial linear model: Biomass is controlled by time, but don’t

know in which pattern, and also by some SNPs.)

Here p = 488, n = 184, Ti = 6, 7, 8. The response y is the total biomass, t is

the time point, x is the p-dim SNP information, coded as 0 and 1. (Do we need to
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explain why it has only two genotypes? To impute the missing marker information,

incorporate the rate of recombinant homozygotes.)

We only report the result from the partial residual two-stage approach with

SCAD penalty and BIC tuning parameter selection rule. In the first stage, PRSIS

reduces the dimension from 488 to 191; and in the second stage, the SCAD+BIC

chooses 13 SNPs. The mean squared error MSE=0.122, and the total heritability

is 11.01%. The information of chosen SNPs are listed in Table (6.5), where the

individual heritability is the estimate of var(βjxj)/var(y).

The tuning parameter selection plot and the estimated baseline function are in

Figure 6.1. Therefore, α(t) is indeed a increasing function of t.

Table 6.1. Simulation results for Example 1.
M

p n p1 p4 p7 pa R1 R4 R7 5% 25% 50% 75% 95%
PRSIS

2000 200 1 1 1 1 1.00 3.25 2.70 3.00 3.00 3.00 4.00 6.00
100 1 0.88 0.93 0.81 1.16 20.14 8.33 3.00 3.00 5.00 14.75 67.45

1000 200 1 1 1 1 1.01 3.18 2.80 3.00 3.00 3.00 4.00 6.00
100 1 0.94 0.91 0.85 1.08 11.21 10.76 3.00 4.00 5.00 8.00 73.00

500 200 1 1 1 1 1.02 3.28 2.88 3.00 3.00 4.00 5.00 6.00
100 1 0.96 0.98 0.94 1.07 7.56 4.49 3.00 3.00 5.00 6.00 21.85

SIS
2000 200 1 0.96 0.98 0.94 1.21 12.18 4.97 3.00 3.75 5.00 8.00 39.20

100 0.97 0.58 0.70 0.41 4.76 71.38 36.81 3.95 10.75 28.00 88.00 412.30
1000 200 1 0.94 1 0.94 1.14 8.05 4.43 3.00 3.00 5.00 8.25 38.10

100 0.99 0.75 0.66 0.49 2.39 38.71 40.88 3.00 7.00 21.00 56.75 267.35
500 200 1 0.98 0.99 0.97 1.14 5.50 4.39 3.00 3.00 4.00 7.00 15.05

100 1 0.79 0.79 0.63 1.56 21.89 21.11 3.00 5.00 12.00 34.25 158.60
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Table 6.2. Simulation results for Example 2.
M

p n p1 p4 p7 pa R1 R4 R7 5% 25% 50% 75% 95%
PRSIS

2000 100 1 0.98 1 0.98 1.00 5.65 2.56 3.00 3.00 3.00 4.00 7.35
50 1 0.78 0.92 0.73 1.04 43.88 22.79 3.00 4.00 11.00 26.25 301.20

1000 100 1 1 1 1 1.01 2.96 2.46 3.00 3.00 3.00 3.00 6.00
50 1 0.84 0.86 0.70 1.02 22.66 13.14 3.00 3.00 8.00 26.00 135.45

500 100 1 0.99 1 0.99 1.02 3.24 2.59 3.00 3.00 3.00 3.00 5.05
50 1 0.85 0.98 0.83 1.01 11.18 5.19 3.00 3.00 5.00 12.25 56.55

SIS
2000 100 1 0.96 0.98 0.94 1.02 14.58 3.79 3.00 3.00 4.00 6.00 31.35

50 1 0.54 0.76 0.41 1.34 81.44 63.51 4.00 11.00 33.50 117.50 573.00
1000 100 1 1 0.99 0.99 1.08 4.41 3.75 3.00 3.00 3.00 6.00 19.05

50 1 0.73 0.80 0.57 1.38 50.33 27.24 3.00 5.00 15.00 80.50 269.90
500 100 1 0.98 0.98 0.96 1.06 4.53 3.36 3.00 3.00 3.00 4.00 9.60

50 1 0.81 0.88 0.70 1.13 18.56 13.94 3.00 4.75 11.00 29.25 128.90

Table 6.3. Simulation results for Example 3.
M

p n p1 p4 p7 pa R1 R4 R7 5% 25% 50% 75% 95%
PRSIS

2000 100 1 0.96 1 0.96 1.04 9.02 3.05 3.00 3.00 4.00 6.00 27.00
50 1 0.64 0.72 0.43 1.24 71.42 52.84 3.95 9.00 27.50 104.25 478.10

1000 100 1 0.96 0.98 0.94 1.02 7.65 4.82 3.00 3.00 4.00 6.00 54.15
50 1 0.58 0.85 0.50 1.16 46.34 14.42 3.00 5.00 20.50 46.50 257.65

500 100 1 0.98 1 0.98 1.03 4.50 2.90 3.0 3.0 4.0 4.0 12.1
50 1 0.76 0.88 0.66 1.14 27.71 12.13 3.00 5.00 9.00 28.25 166.05

SIS
2000 100 1 0.86 0.96 0.84 1.13 18.90 6.96 3.00 4.00 7.00 16.25 78.35

50 0.98 0.43 0.52 0.21 3.27 120.49 99.42 5.00 26.00 66.50 226.25 829.80
1000 100 1 0.88 0.93 0.82 1.05 18.12 9.60 3.00 3.00 5.50 15.50 91.05

50 1 0.45 0.64 0.27 1.59 92.78 42.94 4.00 18.50 52.00 168.25 422.95
500 100 1 0.95 0.98 0.94 1.07 7.45 4.35 3.0 3.0 4.0 8.0 33.0

50 0.98 0.63 0.77 0.44 1.99 38.19 22.28 3.00 7.75 22.00 53.00 313.35
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Table 6.4. Simulation results for Example 4.

Penalty and Average Coverage % of Average
Tuning Parameter Model Probability Correct Heritability
Selection Rule Size (%) Zero %

p = 500, n = 100
LASSO+CV 24.20 97 95.72 29.47
AdaptiveLASSO+AIC 18.84 97 96.81 33.82
AdaptiveLASSO+BIC 8.66 97 98.86 34.87
SCAD+AIC 16.72 97 97.23 35.38
SCAD+BIC 8.51 97 98.89 37.49

p = 1000, n = 100
LASSO+CV 24.88 99 97.80 26.43
AdapLASSO+AIC 19.39 98 98.35 30.38
AdapLASSO+BIC 9.89 97 99.30 32.39
SCAD+AIC 16.95 97 98.59 31.72
SCAD+BIC 9.29 97 99.36 34.77

Table 6.5. information and heritability of the SNPs chosen by SCAD+BIC.

SNP index Chromosome SNP names Marker distance Individual Heritability (%)
477 Satt592 32.6 2.718
463 Sat379 154.6 1.296
485 satt173 99.1 3.266
12 satt648 86.8 0.703
223 Satt397 123.2 0.975
489 satt608 105.3 0.305
308 A426T 185.4 0.148
486 satt188 100.9 1.045
470 satt237 50.4 0.233
144 sat252 93.5 0.125
225 Sat292 134.1 0.012
247 Satt204 54.2 0.166
246 Satt263 50.6 0.005
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Figure 6.1. Tuning parameter selection and the estimated baseline function α(t).
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Chapter 7
Conclusion and Future Research

7.1 Conclusion Remarks

Different two-stage approaches are proposed specifically for ultrahigh dimensional

models with varying coefficient structure, longitudinal structure, and partially lin-

ear model setting. The screening score ρ̂∗ of the screening procedure for ultrahigh

dimensional varying coefficient models, called conditional correlation independence

screening (CCIS), is constructed based on the conditional correlation ρ(xj, y|u)

between each predictor xj and the response y given the index variable u, and we

use kernel smoothing to estimate ρ(xj, y|u) via five conditional means. For future

study, other smoothing techniques can be applied as long as they can guarantee the

nonnegativity of the variance estimation. Iterative screening procedure CCIS for

varying coefficient models is advocated to improve the finite sample performances,

by which we can identify the variables that are jointly associated with the response

but marginally not. This procedure can be extended to longitudinal data struc-

ture by ignoring the within-subject correlation in the screening stage. Simulation

results show that we do not lose ranking consistency and sure screening property

by doing this. For partially linear models, although they can be considered as

a special case of time-varying coefficient models, we propose a different strategy

PRSIS to reduce the dimensionality based on the partial residual method.

The ranking consistency and sure screening property of CCIS for varying coef-

ficient models are proved in Chapter 4. Furthermore, all the two-stage approaches

with the newly proposed screening methods are demonstrated in the genetic stud-
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ies. To illustrate the two-stage approach for varying coefficient models with CCIS

as the first stage, we analyze the GWAS data set from Framingham Heart Study

(FHS). In the screening stage, CCIS is applied to take into account the effect of

SNPs on BMI which may depend on the baseline age of subject, and in the post-

screening variable selection stage, LASSO, Adaptive LASSO and SCAD penalized

regression are modified for varying coefficient models. The report of prediction

errors and model sizes indicates that CCIS+SCAD combination gives the sparsest

model with smallest median squared prediction error (MSPE), and the generalized

likelihood ratio test further convince us that CCIS+SCAD is sufficient for model-

ing the response. However, if the dynamic pattern of BMI is of more interest rather

than the baseline value, we need to study the longitudinal structure. The same

procedure as CCIS can be applied, by not taking into account the within-subject

correlation. We select a different SNP set for explaining the dynamic pattern of

BMI by the two-stage approach for longitudinal models, thus the SNP effect on

baseline BMI is different from that on the whole BMI curve. To demonstrate the

application of PRSIS for partially linear models, we study the SNP effect of soy-

bean on the biomass of them. 13 SNPs are selected by the two-stage approach

with PRSIS in the first stage and partial residual penalized regression with SCAD

penalty in the second stage.

7.2 Future Research

In Chapter 6, we illustrated the sure screening property and ranking consistency

of PRSIS for partially linear models through Monte Carlo simulations, but have

not theoretically verified them as we did in Chapter 4 for CCIS. The regularity

conditions and the theoretical framework are challenging but interesting for future

work.

Furthermore, no matter which model setting we assume until now, we have only

considered the continuous response case. In reality, however, discrete responses

are often encountered with a certain distribution. For example, instead of BMI,

suppose we are interested in studying the relationship between the smoking status

y and SNPs x’s, where y is coded as 1 for “yes” and 0 for “no”. Then the response is

now a binary variable from Bernoulli distribution with certain success probability.
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Other possible distributions might be, but not limited to, Poisson distribution,

Binomial distribution, etc. This motivates us to study the generalized varying

coefficient model.

Specifically, we assume (ui,xi, yi), i = 1, . . . , n, is a random sample from the

population (u,x, y), where the random scalar y is from an exponential family with

the canonical form of probability density function related to x and u,

f(y, θ(u,x)) = exp{yθ(u,x)− b(θ(u,x)) + c(y)},

where θ(u,x) is an unknown function of u and x, and b(·), c(·) are unknown

functions. Note that we do not study the dispersion parameter here, and only

model the mean function

E(y|u,x) = b′(θ(u,x)) ≡ m(u,x)

where b′ is the first-order derivative of b(·). With the canonical link function

g = (b′)−1, the generalized varying coefficient model can be represented as

g(m(u,u)) = θ(u,x) = xTβ(u), (7.1)

and the density function now becomes

f(y|u,x) = exp{yxTβ(u)− b(xTβ(u)) + c(y)}. (7.2)

In the above example, where the smoking status y is binary, the distribution of y

can be characterized by

y|u,x ∼ Bernoulli(π(u)), logit(π(u)) = xTβ(u),

where logit(π(u)) = log{π(u)/(1−π(u))}. If y is the counting variable from Poisson

distribution,

y|u,x ∼ Poisson(λ(u)), log(λ(u)) = xTβ(u).

Although the theoretical properties of the aforementioned ordinary feature

screening method for varying coefficient models do not rely on the continuity of
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response and the normality assumption, it is not straightforward to visualize the

rationale of using it as the screening procedure for generalized varying coefficient

models. Therefore, we develop a new screening procedure especially for generalized

varying coefficient models.

Notice that conditional on u, the generalized varying coefficient model (7.1)

becomes an ordinary generalized linear model. Motivated by Fan and Song (2010),

we consider using the marginal maximum log-likelihood for each predictor xj to

represent its importance. Specifically, consider the p marginal models

g(m(u,u)) = θ(u,x) = β0j(u) + βj(u)xj, j = 1, . . . , p.

According to the conditional density function (7.2), β0j(u) and βj(u) should max-

imize the population version of conditional log-likelihood Q(β0j(u), βj(u)|u):

Q(β0j(u), βj(u)|u) = E [{y · (β0j(u) + βj(u)xj)− b(β0j(u) + βj(u)xj)}|u]

= β0j(u)E(y|u) + βj(u)E(xjy|u)− E{b(β0j(u) + βj(u)xj)|u}

Empirically, we apply kernel smoothing technique to estimate the three conditional

expectations above, i.e.

Ê(y|u) =
n∑
i=1

ωi(u)yi, Ê(xjy|u) =
n∑
i=1

ωi(u)xijyi,

Ê(b(β0j(u) + βj(u)xj)|u) =
n∑
i=1

ωi(u)b(β0j(u) + βj(u)xij),

where the weight {ωi(u), i = 1, . . . , n} is the normalized kernel function of u:

ωi(u) =
Kh(u− ui)∑n
i=1Kh(u− ui)

.

Therefore, the estimated marginal coefficients β̂0j(u) and β̂j(u) are obtained by

(β̂0j(u), β̂j(u)) = argmaxβ0j ,βjQ(β0j(u), βj(u)|u),



www.manaraa.com

141

where

Q(β0j(u), βj(u)|u) = β0j(u)Ê(y|u) + βj(u)Ê(xjy|u)− Ê{b(β0j(u) + βj(u)xj)|u}

In the optimization problem above, the maximizer (β̂0j(u), β̂j(u)) can be obtained

by Newton-Raphson algorithm, where b(·) is determined by the conditional distri-

bution of y given x and u. For example, if y is binary from Bernoulli distribution,

b(θ) = log(1 + eθ), and if y is the counting variable from Poisson distribution,

b(θ) = exp(θ).

After we obtain the estimates (β̂0j(u), β̂j(u)), we can compute the conditional

maximum log-likelihood estimate given u:

Q̂(β̂0j(u), β̂j(u)|u) = β̂0j(u)Ê(y|u) + β̂j(u)Ê(xjy|u)− Ê{b(β̂0j(u) + β̂j(u)xj)|u}.

To average out the effect of u, we calculate Q̂ value for each ui, and the final

screening criterion is defined as

Q∗j =
n∑
i=1

Q̂(β̂0j(ui), β̂j(ui)|ui).

Then we sort Q∗j in a decreasing order, and reduce the model size from ultrahigh

p to moderate d by picking the top d predictors, that is, the submodel

Mγ = {j : 1 ≤ j ≤ p, Q∗j ranks among the top d.}.

To assess the performance of the feature screening procedure for the generalized

varying coefficient model (7.1), we conduct the following Monte Carlo simulations.

Same as before, the univariate index variable ui and the covariate xi are generated

i.i.d in the following fashion:

(u∗i ,xi) ∼MVN(0,Σ), where Σjk = ρ|j−k|, j, k = 1, . . . , p+ 1,

ui = Φ(u∗i ), i = 1, . . . , n. (7.3)

For all examples, we set ρ = 0.8, p = 1000, n = 400, and repeat the experiment

100 times. In each of the 100 simulations, we choose d to be d0, 2d0 and 3d0, where
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d0 = [n4/5/ log(n4/5)]. For evaluating the performances, we still use the following

criteria:

• pj: The proportion of the jth predictor being selected into the model with

size d.

• pa: The proportion that all active predictors are selected into the model.

• rankj: The ranking of ρ∗j in a decreasing order.

• M : the minimum size of the model which contains all the true predictors. We

report the 5%, 25%, 50%, 75% and 95% quantiles of M from 100 simulations.

Example 1. This example is a linear regression model, where we generate the

random noise {εi, i = 1, . . . , n} from i.i.d. N(0, 1). The true sparse model is

generated as

y = 1.8x2 − 1.7x100 + 2x400 − 1.5x600 + 1.5x1000 + ε.

Table 7.1, 7.2, and 7.3 demonstrate the performances of all the four screening

techniques, where SIS is the sure independence screening proposed by Fan and

Lv (2008), MMLE is the marginal maximum likelihood method proposed by Fan

and Song (2010), VCM is the screening technique especially for varying coefficient

models proposed in chapter 3, and GVCM is the newly advocated method for

generalized varying coefficient models.

The first table depicts the proportion of including each truly important vari-

ables into the submodel with size d0, 2d0 and 3d0. A good screening procedure

should be able to contain all the true predictors with large probability, called sure

screening property (Fan and Lv, 2008). And The second table illustrates the rank-

ing of each significant variable in terms of the corresponding screening scores. The

small numbers of rankings for the important predictors indicate the validity of the

screening method, proposed as ranking consistency property by Zhu, Li, Li and

Zhu (2011). The third table, with the summary of minimum model size shows

both sure screening property and ranking consistency property.
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From the following three tables, we conclude that for linear models, which

are special cases of varying coefficient models and generalized varying coefficient

models, all the four methods work well and have an overwhelming probability to

include all the truly important predictors, especially when the submodel size is

d = 2d0 or d = 3d0, we can include all the important predictors with probability

1. Under this circumstance, SIS is preferable due to its computational efficiency.

And since the screening method for generalized varying coefficient requires the

iterative algorithm during the estimation procedure, we do not recommend it if

the underlying model structure is linear.

Table 7.1. The proportions pj and pa for Example 1.

p2 p100 p400 p600 p1000 pa
d = d0

SIS 1 1 1 1 0.98 0.98
MMLE 1 1 1 1 0.98 0.98
VCM 1 1 1 0.99 1 0.99

GVCM 1 1 1 1 0.99 0.99
d = 2d0

SIS 1 1 1 1 1 1
MMLE 1 1 1 1 1 1
VCM 1 1 1 1 1 1

GVCM 1 1 1 1 1 1
d = 3d0

SIS 1 1 1 1 1 1
MMLE 1 1 1 1 1 1
VCM 1 1 1 1 1 1

GVCM 1 1 1 1 1 1

Table 7.2. rankj of each true predictor xj for Example 1.

x2 x100 x400 x600 x1000
SIS 2.8 4.09 1.36 7.2 7.9

MMLE 2.8 4.09 1.36 7.2 7.9
VCM 6.22 3.25 1.12 6.11 6.28

GVCM 6.28 3.39 1.14 6.36 6.66

Example 2. We now consider logistic regression. Suppose the response y is from
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Table 7.3. The minimum model size M for Example 1.
5% 25% 50% 75% 95%

SIS 5 7 10 12 16
MMLE 5 7 10 12 16
VCM 5.95 7 9 11 13

GVCM 5 7.75 9 11 14

Bernoulli(π), where

logit(π) = 1.8x2 − 1.7x100 + 2x400 − 1.5x600 + 1.5x1000.

Table 7.4, 7.5 and 7.6 reported the performances of the four methods. In this

example, the random error is no longer normally distributed, thus the theoretical

assumption for SIS no longer hold. Nevertheless, we find that the SIS still performs

well, and behaves approximately identically with MMLE. Also, the VCM and

GVCM still have a large chance to include the significant variables, although they

are less preferable for constant coefficient structures due to computation cost.

Table 7.4. The proportions pj and pa for Example 2.

p2 p100 p400 p600 p1000 pa
d = d0

SIS 1 0.96 1 0.94 0.91 0.81
MMLE 1 0.96 1 0.94 0.91 0.81
VCM 0.97 0.98 1 0.95 0.93 0.83

GVCM 0.95 1 1 0.92 0.93 0.80
d = 2d0

SIS 1 1 1 1 1 1
MMLE 1 1 1 1 1 1
VCM 1 1 1 1 1 1

GVCM 1 1 1 0.96 1 0.96
d = 3d0

SIS 1 1 1 1 1 1
MMLE 1 1 1 1 1 1
VCM 1 1 1 1 1 1

GVCM 1 1 1 0.98 1 0.98
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Table 7.5. rankj of each true predictor xj for Example 2.

x2 x100 x400 x600 x1000
SIS 3.53 5.56 2 8.24 8.73

MMLE 3.52 5.6 2 8.32 8.75
VCM 6.85 4.72 1.53 7.24 7.47

GVCM 6.94 4.95 1.64 14.29 8.21

Table 7.6. The minimum model size M for Example 2.
5% 25% 50% 75% 95%

SIS 7 9 12 16 24
MMLE 7 9 12 16 24
VCM 5 8 11 14 21

GVCM 7 10 12 16 32

Example 3. In this example we consider a varying coefficient model

y = β2(u)x2 + β100(u)x100 + β400(u)x400 + β600(u)x600 + β1000(u)x1000 + ε,

where the random noises are still from independent N(0, 1), and nonzero coeffi-

cients are defined by

β2(u) = 3I(u > 0.4), β100(u) = 1 + u, β400(u) = (2− 3u)3

β600(u) = 2 sin(2πu), β1000(u) = exp{u/(u+ 1)}.

The results are reported in Table 7.7, 7.8 and 7.9. Since this example is designed

for the varying coefficient screening procedure, we can see from the three table

that VCM works the best in terms of both ranking consistency and sure screening

property. Moreover, SIS and MMLE fail to detect x600 because β600(u) = 2 sin(2πu)

has empirical mean close to 0, tending to be insignificant if treated as a constant

coefficient. GVCM also works well in this example, since varying coefficient models

are special cases of generalized varying coefficient models.

Example 4. We study the logistic regression with varying coefficients. Suppose
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Table 7.7. The proportions pj and pa for Example 3.

p2 p100 p400 p600 p1000 pa
d = d0

SIS 1 1 0.96 0 0.98 0
MMLE 1 1 0.96 0 0.98 0
VCM 1 1 1 1 0.97 0.97

GVCM 1 1 1 0.97 0.85 0.84
d = 2d0

SIS 1 1 1 0.03 1 0.03
MMLE 1 1 1 0.03 1 0.03
VCM 1 1 1 1 1 1

GVCM 1 1 1 1 0.98 0.98
d = 3d0

SIS 1 1 1 0.06 1 0.06
MMLE 1 1 1 0.06 1 0.06
VCM 1 1 1 1 1 1

GVCM 1 1 1 1 0.99 0.99

Table 7.8. rankj of each true predictor xj for Example 3.

x2 x100 x400 x600 x1000
SIS 1.91 2.89 7.01 488.44 5.43

MMLE 1.91 2.89 7.01 488.44 5.43
VCM 1.15 3.96 2.57 8.13 6.76

GVCM 2.8 6.52 1.19 8.94 11.04

Table 7.9. The minimum model size M for Example 3.
5% 25% 50% 75% 95%

SIS 36 195 519.5 722 951.4
MMLE 36 195 519.5 722 951.4
VCM 5 7.75 10 12 15

GVCM 7 10 12 15 24.1

y is a binary response from Bernoulli(π(u)), where

logit(π(u)) = β2(u)x2 + β100(u)x100 + β400(u)x400 + β600(u)x600 + β1000(u)x1000,

with the nonzero coefficients defined as Example 3.
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Table 7.10, 7.11 and 7.12 indicate that both VCM and GVCM perform simi-

larly and are able to detect significant variables with large probability, indicating

that although VCM is not specifically designed for generalized varying coefficient

models, it can still be applied without losing much information. GVCM also works

well in terms of the three criteria. However, SIS and MMLE fail for the same reason

as Example 3.

Table 7.10. The proportions pj and pa for Example 4.

p2 p100 p400 p600 p1000 pa
d = d0

SIS 0.89 1 0.75 0.01 0.99 0.01
MMLE 0.87 1 0.76 0.01 0.99 0.01
VCM 0.93 1 1 0.93 0.98 0.84

GVCM 0.92 0.99 0.99 0.95 0.98 0.83
d = 2d0

SIS 0.97 1 0.88 0.02 1 0.02
MMLE 0.97 1 0.89 0.02 1 0.02
VCM 0.99 1 1 1 1 0.99

GVCM 1 1 1 1 0.99 0.99
d = 3d0

SIS 1 1 0.93 0.02 1 0.02
MMLE 1 1 0.93 0.02 1 0.02
VCM 1 1 1 1 1 1

GVCM 1 1 1 1 0.99 0.99

Table 7.11. rankj of each true predictor xj for Example 4.

x2 x100 x400 x600 x1000
SIS 8.81 1.71 21.67 508.7 3.03

MMLE 8.82 1.69 21.64 508.63 3.06
VCM 8.53 2.35 3.53 7.44 4.56

GVCM 7.3 2.89 3.11 6.23 6.79

Example 5. In this example we consider the Poisson generalized varying coeffi-

cient model. Suppose y is a counting response from Poisson(λ(u)), where

log(λ(u)) = β2(u)x2 + β100(u)x100 + β400(u)x400 + β600(u)x600 + β1000(u)x1000,
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Table 7.12. The minimum model size M for Example 4.
5% 25% 50% 75% 95%

SIS 70 256.25 530 749.75 939.7
MMLE 71 256.75 530 749.75 939.7
VCM 7 8 11 15 22

GVCM 6 9 10.5 14.25 27

with the nonzero coefficients

β2(u) = I(u > 0.4), β100(u) = (1 + u)/2, β400(u) = (2− 3u)2

β600(u) = sin(2πu), β1000(u = exp{u/(u+ 1)}/2.

Since the mean value for Poisson variable is λ(u) = exp(xTβ(u)), the right hand

side of the above model cannot be too large, otherwise the exponential of it to be

infinity. Therefore, instead of directly use the generated x in (7.3), we transform

the x values by 2F(x)−1 ∈ [−1, 1], where F(x) is the empirical distribution function

of x. Therefore, we guarantee λ(u) = exp(xTβ(u)) within a reasonable range.

The results are demonstrated in the following three tables 7.13, 7.14, and 7.15.

We discover the same pattern as the previous two examples, indicating that under

generalized varying coefficient model setting, both VCM and GVCM are still valid,

while SIS and MMLE are not necessarily.

We can also conduct real data analysis to illustrate the application of this

screening procedure for generalized varying coefficient models, as we did for CCIS

and PRSIS, and develop some theoretical results.
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Table 7.13. The proportions pj and pa for Example 5.

p2 p100 p400 p600 p1000 pa
d = d0

SIS 0.87 1 0.99 0.12 1 0.11
MMLE 0.87 1 0.99 0.12 1 0.11
VCM 1 1 1 1 1 1

GVCM 0.96 0.99 1 1 0.99 0.94
d = 2d0

SIS 0.94 1 1 0.27 1 0.24
MMLE 0.94 1 1 0.27 1 0.24
VCM 1 1 1 1 1 1

GVCM 0.97 1 1 1 0.99 0.96
d = 3d0

SIS 0.97 1 1 0.38 1 0.36
MMLE 0.97 1 1 0.38 1 0.36
VCM 1 1 1 1 1 1

GVCM 0.99 1 1 1 0.99 0.98

Table 7.14. rankj of each true predictor xj for Example 5.

x2 x100 x400 x600 x1000
SIS 39.57 1.68 7.16 413.59 3.54

MMLE 39.54 1.69 7.14 413.67 3.49
VCM 7.67 2.37 3.97 3.56 5.53

GVCM 16.85 5.34 2.72 4 14.94

Table 7.15. The minimum model size M for Example 5.
5% 25% 50% 75% 95%

SIS 41.95 137.75 379 725 928.15
MMLE 41.8 137 379 725 928.15
VCM 5 7 9 11.25 18.05

GVCM 6 9 11 16 72.85



www.manaraa.com

Bibliography

Akaike, H. (1974) “A new look at the statistical model identification,” IEEE Trans.
on Automatic Control, 19, 716–723.

Breiman, L. (1995), “Better Subset Regression Using the Nonnegative Garrote,”
Technometrics, 37, 373–384.

Cai, Z., Fan, J., and Li, R. (2000), “Efficient estimation and inferences for varying
coefficient models,” Journal of the American Statistical Association, 95, 888–
902.

Chu, C. and Marron, J. (1991), “Choosing a Kernel Regression Estimator,” Sta-
tistical Science, 6, 404–419.

Efron, B., Hastie, T., Joghstone, I., and Tibshirani, R. (2004), “Least angle re-
gression,” The Annals of Statistics, 32, 407–499.

Diggle, P. J., Heagerty, P. J., Liang, K.-Y., and Zeger, S. L. (2002),“Analysis of
longitudinal data, 2nd edition,” Oxford University Press, New York.

Donoho, D. L. (2000), “High dimensional data analysis: The curse and blessing
of dimensionality,” Aide-Memoire of the lecture in AMS con- ference: Math
challenges of 21st Centrury. http://www.stat.stanford.edu/donoho/Lectures.

Fan, J. and Gijbels, I. (1992), “Variable Bandwidth and Local Linear Regression
Smoothers,” The Annals of Statistics, 20, 2008–2036.

Fan, J. (1993), “Local linear regression smoothers and their minimax efficiencies,”
The Annals of Statistics, 21, 196–216.

Fan, J., and Gijbels, I. (1996), Local Polynomial Modeling and Its Applications,
Chapman and Hall, New York, NY.



www.manaraa.com

151

Fan, J., and Zhang, W. (1999), “Statistical estimation in varying coefficient mod-
els,” The Annals of Statistics, 27, 1491–1518.

Fan, J., and Zhang, W. (2001), “Simultaneous confidence bands and hypotheses
testing in varying-coefficient models,” Scandinavian Journal of Statistics, 27,
1491–1518.

Fan, J. and Zhang, J. (2000), “Two-step Estimation of Functional Linear Mod-
els with Applications to Longitudinal Data,” Journal of the Royal Statistical
Society, Series B: Statistical Methodology, 62, 303–322.

Fan, J., Zhang, C., and Zhang, J. (2001), “Generalized likelihood ratio statistics
and Wilks phenomenon,” The Annals of Statistics, 29, 153–193.

Fan, J., and Li, R. (2001), “Variable selection via nonconcave penalized likelihood
and it oracle properties,” Journal of the American Statistical Association, 96,
1348–1360.

Fan, J., and Li, R. (2004), “New estimation and model selection procedures for
semiparametric modeling in longitudinal data analysis,” Journal of the American
Statistical Association, 99, 710–723.

Fan, J., and Peng, H. (2004), “Nonconcave penalized likelihood with a diverging
number of parameters,” The Annals of Statistics, 32, 928–961.

Fan, J. and Li, R. (2006), “An Overview on Nonparametric and Semiparametric
Techniques for Longitudinal Data,” Frontiers in Statistics, (J. Fan and H. Koul
eds., Imperial College Press, London), 277–303

Fan, J., and Li, R. (2006), “Statistical challenges with high dimensionality: fea-
ture selection in knowlege discorvery,” Proceedings of the International Congress
of Mathematicians (M. Sanz-Sole, J. Soria, J.L. Varona, J. Verdera, eds.),
Vol.III, 595–622.

Fan, J. and Zhang, W. (2008), “Statistical methods with varying coefficient mod-
els,” Statistics and its interface, 1, 179–195.

Fan, J. and Lv, J. (2008), “Sure independence screening for ultrahigh dimensional
feature space (with discussion),” Journal of the Royal Statistical Society, Series
B, 70, 849–911.

Fan, J., Samworth, R. and Wu, Y. (2009), “Ultrahigh dimensional feature selection:
beyond the linear model,” Journal of Machine Learning Research, 10, 1829–
1853.



www.manaraa.com

152

Fan, J. and Song, R. (2010), “Sure independence screening in generalized linear
models with NP-dimensionality,” The Annals of Statistics, 38, 3567–3604.

Fan, J. and Lv, J. (2010) “A selective overview of variable selection in high dimen-
sional feature space”. Statistica Sinica 20 101–148.

Foster, D. and George, E. (1994) “The risk inflation criterioin for multiple regres-
sion,”. The Annals of Statistics 22 1947–1975.

Fu, W. (1998) “Penalized regressions: The Bridge versus the LASSO,”. Journal of
Computational and Graphical Statistics 7(3) 397–416.

Gasser, T. and Müller, H. G. (1984), “Estimating Regression Functions and Their
Derivatives by the Kernel Method,” Scandinavian Journal of Statistics, 11, 171–
185.

Hall, P. and Kang, K. (2001), “Bootstrapping nonparametric density estimators
with empirically chosen bandwidths,” Annals of Statistics, 1443–1468.

Hall, P. and Miller, H. (2009), “Using generalized correlation to effect variable
selection in very high dimensional problems,” Journal of Computational and
Graphical Statistics, 18, 533–550.

Hastie, T. J. and Tibshirani, R. J. (1993), “Varying-coefficient models,” Journal
of the Royal Statistical Society, Series B, 55, 757–796.

Hoerl, A. and Kennard, R. (1970) “Ridge regression: Biased estimation for
nonorthogonal problems”. Technometrics 12 55–67.

Hoover, D., Rice, J., Wu, C., and Yang, L. (1998), “Nonparametric smoothing
estimates of time-varying coefficient models with longitudinal data,” Biometrika,
85, 809–822.

Huang, J., Ma, S. G. and Zhang, C. H. (2008), “Adaptive Lasso for sparse high-
dimensional regression models,” Statistica Sinica, 18, 1603–1618

Hunter, D. R., and Li, R. (2005), “Variable selection using MM algorithms,” The
Annals of Statistics, 27, 1491–1518.

Kim, Y., Choi, H. and Oh, H. S. (2008), “Smoothly clipped absolute deviation on
high dimensions,” Journal of the American Statistical Association, 103, 1665–
1673.

Konishi, S. and Kitagawa, G. (1996), “Generalized information criteria in model
selection,” Biometrika, 83, 875–890.



www.manaraa.com

153

Leng, C., Lin, Y., and Wahba, G. (2006), “A note on the LASSO and related
procedures in model selection,” Statistica Sinica, 16.

Li, K. (1987), “Asymptotic optimality for Cp, CL, Cross-Validation and General-
ized Cross-Validation: discrete index set,” The Annals of Statistics, 15, 958–975.

Li, R., Dziak, J., and Ma, Y. (2006), “Nonconvex penalized least squares: charac-
terizations, algorithm and application,” Manuscript.

Li, R., and Liang, H. (2007), “Variable selection in semiparametric regression
modeling,” The Annals of Statistics, 36, 261–286.

Lin, D. Y. and Ying, Z. (2001), “Semiparametric and Nonparametric Regression
Analysis of Longitudinal Data,” Journal of the American Statistical Association,
96, 103–126.

Li, R., Zhong, W. and Zhu, L.P. (2012), “Feature Screening via Distance Correla-
tion Learning,” Journal of the American Statistical Association, 107, 1129–1139.

Mallows, C. (1973), “Some comments on Cp,” Technometrics, 15, 661–675.

Miller, A. (2002), “Subset selection in regression, 2nd edition,” New York: Chap-
man and HALL/CRC.

Müller, H. (1988), Nonparametric regression analysis of longitudinal data,
Springer-Verlag, New York.

Ruppert, D., Sheather, S. J., and Wand, M. P. (1995), “An effective bandwidth
selector for local least squares regression,” Journal of the American Statistical
Association, 90, 1257–1270.

Segal, M. R., Dahlquist, K. D., and Conklin, B. R. (2003), “Regression approach
for microarray data analysis,” Journal of Computational Biology, 10, 961–980.

Shao, J. (1997), “An asymptotic theory for linear model selection,” Statistica
Sinica, 7, 221–264.

Stone, C. J. (1977), “Consistent Nonparametric Regression,” The Annals of Statis-
tics, 5, 595–645.

Tibshirani, R. (1996), “Regression shrinkage and selection via LASSO,” Journal
of the Royal Statistical Society, Series B, 58, 267–288.

Wand, M. and Jones, M. (1995), Kernel Smoothing, Chapman and Hall/CRC.



www.manaraa.com

154

Wang, H., Li, R., and Tsai, C. L. (2007b) “Tuning parameter selectors for the
smoothly clipped absolute deviation method,” Biometrika, 94, 553–558.

Wang, H. (2009), “ Forward regression for ultra-high dimensional variable screen-
ing,” Journal of the American Statistical Association, 104, 1512–1524.

Wang, H. and Xia. Y. (2009), “Shrinkage Estimation of the Varying Coefficient
Model,” Journal of the American Statistical Association, 104, 747–757.

Xia, Y., Zhang, W., and Tong, H. (2004), “Efficient estimation for semivarying
coefficient models,” Biometrika, 91, 661–681.

Yuan, M., and Lin, Y. (2006), “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society, Series B, 68, 49–67.

Zhang, W., Lee, S., and Song, X. (2002), “Local polynomial fitting in semivarying
coefficient model,” Journal of Multivariate Analysis, 82, 166–188.

Zhang, W., and Lee, S. Y. (2007), “Variable bandwidth selection in varying coef-
ficient models,” Journal of Multivariate Analysis, 19, 116–134.

Zeger, S. L. and Diggle, P. J. (1994), “Semiparametric models for longitudinal data
with application to CD4 cell numbers in HIV seroconverters,” Biometrics, 50,
689–699.

Zhu, L.P., Li, L., Li, R., and Zhu, L.X. (2011), “Model-free feature screening for
ultrahigh dimensional data,” Journal of the American Statistical Association,
106, 1464–1475.

Zou, H. (2006), “The adaptive LASSO and its oracle properties,” Journal of the
American Statistical Association, 101, 1418–1429.

Zou, H. and Li, R. (2008), “One-step sparse estimates in nonconcave penalized
likelihood models,” The Annals of Statistics, 36, 1509–1533.



www.manaraa.com

Jingyuan Liu

325 Thomas Building
The Pennsylvania State University
State College, PA, 16802

Phone: (814)-321-7556
Email:jul221@psu.edu

Education Ph.D. Candidate in Statistics, GPA: 4.0/4.0 08/08 - 05/13
Department of Statistics, Pennsylvania State University (PSU)
Dissertation: Statistical Methods for Ultrahigh Dimensional Models.

B.S. in Statistics, GPA: 3.9/4.0 09/04 - 06/08
School of Mathematics, Shandong University

Publications/
Manuscripts

Conditioning-correlation screening for varying coefficient models, J. Liu, R. Li,
R. Wu. To be submitted to Journal of the American Statistical Association

Ultrahigh dimensional partially linear model and its application, J. Liu, R. Li,
R. Wu, In preparation for Bioinformatics

Considerations in Identifying Treatment Effects on Transient Event Driven
Health Status Changes Measured by Patient Reported Outcomes, J. Liu, J.
Legg, M. May. Ready to be submitted to Statistics in Medicine

Model and algorithm for linkage disequilibrium analysis in a nonequilibrium
population, J. Liu, Z. Wang, Y. Wang, R. Li, R. Wu. Frontiers in Statistical Genetics
and Methodology 2012; 3: 78

Functional mapping of developmental processes: theory, applications, and
prospects, K. Das, J. Liu, G. Fu, J. Li, Y. Li, C. Tong, R. Wu. Methods in Molecular
Biology 2012; 871:227-243

Dynamic modeling of genes controlling cancer stem cell proliferation, Z. Wang,
J. Liu, J. Wang, Y. Wang, N. Wang, Y. Li, R. Li, R. Wu. Frontiers in Statistical Genet-
ics and Methodology 2012; 3: 84

Statistical models for genetic mapping in polyploids: challenges and oppor-
tunities, J. Li, K. Das, J. Liu, G. Fu, Y. Li, C. Tobias, R. Wu. Methods in Molecular
Biology 2012; 871:245-261

Teaching
Experience

Instructor, Department of Statistics, PSU 08/10 - 08/11
Courses: Probablity; Applied Regression

Teaching Assistant, Department of Statistics, PSU 08/08 - 05/13
Courses: Applied Statistics; Design of Experiment; Biostatistics;
ANOVA and Design of Experiments; Experimental Methods

Working
Experience

Statistician (Intern), Amgen Inc. 05/12 - 08/12

Statistical Consultant, Statistical Consulting Center, PSU 08/10 - 05/11

Awards 2011 Harkness Excellent Teaching Award, Dept. of Statistics, PSU 12/11

Student Travel Grant, Joint Statistical Meetings 08/11

PhD qualifier exam pass with distinction, Dept. of Statistics, PSU 01/10

Master qualifier exam pass with distinction,Dept. of Statistics, PSU 05/09

Student of Distinction, Shandong Province 01/08


